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Science at Virginia Commonwealth University. 
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Major Director:  Małgorzata Dukat, Associate Professor 
Department of Medicinal Chemistry 

 
 
 
 Serotonin receptors play a variety of functional roles in the body. Some 

indications and treatment claims for one of the classes of serotonin receptors, the 5-HT3 

receptor family, include: anxiety, depression, chemotherapy- and radiation-induced 

emesis, constipation, irritable bowel syndrome, pain, drug addiction, and satiety control. 

 A 5-HT3 receptor partial agonist, MD-354, served as a lead compound in the 

development of new 5-HT3 receptor ligands. Using halogenated analogs the study 

investigated their effect on binding to the 5-HT3 receptor. Conformationally-constrained 

analogs (quinazolines) were shown to be a novel class of 5-HT3 receptor antagonists. The 
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log P values were determined for several analogs, and indicated that these ligands should 

be able to penetrate the blood-brain barrier. A homology model of the 5-HT3 receptor 

was built and the docking modes were assessed for these two series. Quinazolines were 

investigated for antidepressant properties using the mouse tail suspension test, and were 

shown to possess antidepressant-like activity. 
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I. Introduction 

 Serotonin (5-HT) research in the central nervous system (CNS) has come a long 

way since serotonin was first proposed to be a neurotransmitter.1 After the identification 

of the first two serotonin receptors in 1957,2 the list has expanded several times to include 

seven major families and their subtypes. Most serotonin receptors are G-protein coupled-

receptors (GPCRs); however, one family of serotonin receptors consists of ligand-gated 

ion-channel (LGIC) receptors—the 5-HT3 receptor family. 

 Ligand-gated ion-channels are fast acting. Once a ligand activates the receptor, an 

agonist, binds to the receptor; the receptor is depolarized and ions quickly travel through 

the pore, changing the synaptic polarity. 5-HT3 receptors are generally co-localized on 

nerve endings with other neurotransmitter receptors. The change in synaptic polarity from 

activation of 5-HT3 receptors can stimulate the release of nearby neurotransmitters (i.e., 

dopamine, norepinephrine, glutamate, acetylcholine, γ-aminobutyric acid, and 

serotonin).3,4 Since 5-HT3 receptors can stimulate the release of so many 

neurotransmitters it seems to have the potential to be involved in several different 

functions. 

 Most notably, 5-HT3 receptors are known for their antagonists, most of which are 

clinically available as anti-emetics. These drugs are effective in the treatment of 

chemotherapy- and radiation-induced emesis.5 From the investigations into treating 
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emesis, other 5-HT3 receptor antagonists have been identified to be useful in the 

treatment of irritable bowel syndrome (IBS).5 The 5-HT3 receptors have also been 

implicated in depression, pain modulation, the reward pathway, schizophrenia, and 

anxiety.5,6 No known therapeutic function has been identified for 5-HT3 receptor 

agonists. 

 m-Chlorophenylguanidine (mCPG; MD-354) is a partial agonist at the 5-HT3 

receptor, it behaves as an agonist in some assays and as antagonist in other assays; but 

binds with high affinity to the 5-HT3 receptor (Ki = 35 nM).7,8 Because of the partial 

agonist characteristic, it would be valuable to develop novel analogs to explore which 

aspects are necessary for binding to the 5-HT3 receptor as well as ways to improve 

binding affinity. 

 The 5-HT3 receptors are located in the CNS as well as in the periphery. In order to 

study the effects of the 5-HT3 receptors in the CNS, agents must be able to get into the 

brain and cross the blood-brain barrier (BBB). MD-354 has a log P value of -0.64 

suggesting it may not be able to easily penetrate the BBB;9 thus, developing analogs that 

can cross the BBB would be necessary for studying 5-HT3 receptors in the CNS. 

 In drug development, molecular modeling has proven to be a powerful tool. Since 

the structure of the 5-HT3 receptor has yet to be determined by X-ray crystallography, 

homology models of the receptor can be built from other ligand-gated ion-channels of the 

Cys-loop family whose structure has been determined to identify possible binding modes 

of known agents and aid in the design of new agents. 
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 From data compiled since 1960, depression affects up to 38% of cancer 

patients.10,11 The idea of being able to treat the emesis from chemotherapy as well as the 

depression with one drug is an inviting possibility. Both 5-HT3 receptor antagonists and 

agonists have been shown to behave as antidepressants in the forced swim and tail 

suspension tests in rodents.12-17 This suggests that a variety of classes of 5-HT3 receptor 

agents are capable of having the same interactions with the 5-HT3 receptor, an analysis of 

selected agents for antidepressant-like properties may yield a novel class of 

antidepressants. 
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II. Background: 

A. History of Serotonin 

Evidence for the existence of serotonin (5-hydroxytryptamine; 5-HT; 1) (Figure 

1) was detected as early as 1868 as a vasoconstrictor.18 However, its isolation did not 

occur for more than another half century. Independently, Erspamer and Vialli19 isolated 

enteramine in the late 1930s from enterochromaffin cells in the gut and Rapport et al.20 

isolated serotonin as a beef serum vasoconstrictor substance in 1948. In 1949, Rapport 

determined the structure of serotonin as 5-hydroxytryptamine.21 But it was not until 1952 

that Erspamer and Asero discovered that enteramine and serotonin were one and the 

same.22 

 

1 

Figure 1. The structure of serotonin (5-HT). 

 The central nervous system (CNS) story of serotonin began in 1953 when Twarog 

and Page discovered serotonin in dog, rat, and rabbit brains;23 later, in 1954, Twarog
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proposed serotonin to be a neurotransmitter.1 Independently Woolley and Shaw,24 and 

Gaddum and Hameed25 proposed that the action of 5-HT in the brain and in the gut could 

be antagonized by the hallucinogen LSD ((+)-lysergic acid diethylamide). 

 Serotonin has been implicated in a number of different processes in both the 

periphery and central nervous systems and has been shown to play a role in alcoholism 

and drug abuse, cognitive disorders, depression, anxiety, schizophrenia, chemotherapy- 

and radiation-induced emesis, constipation, irritable bowel syndrome, migraines, 

fibromyalgia, pain, obesity, appetite disorders, and autism.6 

B. Classification of 5-HT Receptors 

 The first definitive receptors for 5-HT were identified by Gaddum and Picarelli in 

1957.2 These receptors were originally called D- and M-receptors because they were 

antagonized by dibenzyline and morphine, respectively. In 1979 Peroutka and Snyder 

used 14C and 3H techniques to determine 5-HT receptor subtypes in vitro.26 A receptor 

classification scheme was proposed by the Nomenclature Committee of the International 

Union of Pharmacology (IUPHAR) in 1992.27 Table 1 provides the general criteria for 

receptor classification as provided by IUPHAR.28 Receptors are classified by operational 

(drug-binding), structural (sequence of the receptor), and transductional (receptor-effector 

coupling) characteristics. Upper case lettering is used when the receptor has been 

identified in whole cells while lower case lettering is used when identifying recombinant 

receptors.  
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 To date there are seven major families of serotonin receptors (5-HT1-5-HT7). All, 

but the 5-HT3 (5-HT3A-5-HT3E) receptors, belong to the G-protein coupled-receptor 

(GPCR) superfamily. The 5-HT3 receptors belong to the Cys-loop ligand-gated ion-

channel (LGIC) receptor superfamily. The 5-HT1 (5-HT1A, 5-HT1B, 5-HT1D, 5-ht1e, 5-

HT1F) receptors inhibit adenylate cyclase (AC); the 5-HT2 (5-HT2A, 5-HT2B, 5-HT2C) 

receptors stimulate phospholipase C (PLC) production. The 5-HT4, 5-HT6, 5-HT7 (5-

HT7A, 5-HT7B, 5-HT7D) receptors stimulate adenylate cyclase while a second messenger 

system for activation of the 5-ht5a and 5-ht5b receptors has yet to be defined.6,28-30 

Table 1. Criteria for receptor characterization.28 

Criteria Definition 
Operational  

a. Selective agonists Agonists showing high selectivity for a particular 
receptor compared to their potencies at other receptors 
need to be identified. 

b. Selective antagonists Receptor-blocking drugs are needed that can block the 
actions of agonists by blocking the receptor. 

c. Ligand-binding affinities Dissociation constants for ligands in binding studies 
should correlate with data from functional studies. 

Structural  
d. Molecular structure Amino acid sequence of the receptor protein provides 

evidence for receptor identity; relative homologies 
can be used for classification and defining families 
and subfamilies. 

Transductional  
e. Intracellular transduction 

mechanisms 
Information that further defines a superfamily and any 
information that may be indicative of the nature of the 
intracellular protein structure. 

1. G-Protein Coupled-Receptors 

 GPCRs are characterized by seven transmembrane-spanning helicies (TM1-TM7), 

three intracellular loops (IL1-IL3), and three extracellular loops (EL1-EL3) (as reviewed 
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by Lagerström and Schiöth).31 The amine terminus is extracellular and the carboxyl 

terminus is intracellular. One of the intracellular loops, usually IL2 or IL3, is coupled to a 

heterotrimeric G-protein, which upon ligand binding dissociates to a βγ subunit and an α 

subunit to activate second messenger systems (e.g., PLC and AC). There are many other 

GPCRs including the adrenergic receptors and rhodopsin receptors. 

2. Ligand-Gated Ion-Channel Receptors 

 5-HT3-type receptors are ligand-gated ion-channel receptors and are part of the 

Cys-loop superfamily.32 Structurally, these receptors are pentamers with each subunit 

(Figure 2) consisting of a very large extracellular domain (ECD) containing the amine 

terminus and the ligand-binding domain, four transmembrane-spanning helicies (M1-

M4), a short intracellular loop connecting M1 to M2, a short extracellular loop 

connecting M2 to M3, an intracellular loop between M3 and M4, and an extracellular 

carboxyl terminus.33,34 The M2 helix of each subunit makes up the inner lining of the 

cationic pore. Upon binding of an agonist, the receptor depolarizes and allows the influx 

of cations through the pore. This change in synaptic polarity may stimulate the release of 

other nearby neurotransmitters. The long ECD that is associated with the amine terminus 

consists of six putative loops (A-F); loops A, B, and C make up the principle side of the 

binding interface and loops D, E, and F make up the complementary side of the binding 

interface (Figure 3).35 Incidentally, the binding site for agonists and competitive 

antagonists lies at the interface of two protomers. On the C loop there are two cysteines 

separated by 13  amino acids; they form  a disulfide linkage  and  thus a  Cys-loop. Other  
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Figure 2. Schematic representation of a single protomer of a LGIC receptor. 

  

Figure 3. Bottom veiw of the homopentameric h5-HT3A ECD (left). Side view of the 
ligand binding domain; loops A, B, and C are on one protomer (“principle subunit”; red) 
and loops D, E, and F are on the adjacent protomer (“complementary subunit”; blue) 
(right). 



www.manaraa.com

9 
 

LGIC receptors include nicotinic acetylcholine (nACh), γ-aminobutyric acid type A 

(GABAA), and glycine receptors.5,6 There is a 22-30% sequence homology between the 

5-HT3A receptor subunit sequence and the α-subunits of other members of the LGIC 

family.36 Ortells and Lunt proposed that 5-HT3 receptors are a possible common ancestor 

of all LGIC receptors.37 To date, there are no X-ray crystal structures of 5-HT3 receptors; 

however, various acetylcholine binding proteins’ structures have been identified by X-ray 

crystallography.38-40 The structure of a nicotinic acetylcholine receptor has been derived 

using electron microscopy.41 Also, the α1 subunit ECD of a mouse nACh receptor bound 

to α-bungarotoxin has been crystallized and the structure determined.42 Since the 5-HT3 

receptor subunits share features with nACh receptors (i.e., protein sequence homology 

between 5-HT3A receptor subunit sequences and the α subunit of other LGIC receptors is 

22-30%),36 homology models for 5-HT3 receptors can be developed based on the crystal 

structures available.38-42 There have been some reports of chimeric receptors between 

different members of the LGIC family.35,43 

C. 5-HT3 Receptors 

1. Classification 

 5-HT3 receptors were identified as the original M receptor but were later renamed 

5-HT3 receptors by Bradley et al.44 The 5-HT3A receptor subtype was initially cloned by 

Maricq et al. in 1991 from NCB-20 murine hybridoma cells.45 The first human 5-HT3 

receptors were cloned from the hippocampus, amygdala, and colon.46,47 The human 

HTR3A gene is located on chromosome 11 and each receptor subunit consists of 478 
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amino acids.48 Species orthologs of the 5-HT3A receptor have also been identified in the 

rat,47 mouse,44 dog,49 guinea pig,50 and ferret.51 There are a few splice variants of the 5-

HT3A receptor subunits: 5-HT3AS (i.e., short), h5-HT3AT (i.e., short, truncated) and h5-

HT3AL (i.e., long).52 The 5-HT3AS receptor subunit is found in mouse, rat, and guinea 

pig, and has six fewer amino acids in the loop between M3 and M4.44,47,50 The h5-

HT3AT receptor subunit, found in humans, only has 238 amino acids and a single 

transmembrane helix (M1).52 The h5-HT3AL receptor subunit, found in humans, has an 

additional 32 amino acids in the loop between M2 and M3.52 These isoforms do not form 

functional homomeric receptors but form functional heteromeric receptors with the native 

h5-HT3A receptor subunits.52 Receptors containing h5-HT3AT subunits have decelerated 

desensitization and therefore, a larger response to Ca2+ fluxes.52 Those receptors 

containing h5-HT3AL subunits accelerate desensitization and have reduced Ca2+ fluxes.52 

The 5-HT3B receptor subtype was isolated in 1999 by screening human genomic 

sequence data by Davies et al.53 It shares 41% amino acid sequence identity with h5-

HT3A receptors and is also located on chromosome 11, and each subunit has 441 amino 

acids.53,54 Rat and mouse orthologs of the 5-HT3B receptor have also been identified.55 

The 5-HT3C, 5-HT3D, 5-HT3E receptor subtypes were cloned by Niesler et al.56 and 

Karnovsky et al.57 independently in 2003. The 5-HT3D receptor subtype as predicted by 

Niesler et al.56 lacks a signal peptide and most of the amine terminus ECD including the 

Cys-loop; not surprisingly, each subunit only has 279 amino acids. The 5-HT3C and 5-

HT3E receptor subtypes share 36% and 39% amino acid sequence homology with h5-

HT3A receptors,57 and have 447 and 471 amino acids, respectively. All three of these 
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subtypes are located on chromosome 3 and were originally thought to be exclusive to 

humans. 5-HT3C and 5-HT3E have since been found in chimp and dog.58 

2. Structure and Distribution 

 Only the 5-HT3A receptor subtype forms homomeric receptors; the remainder of 

the subtypes form functional heteromeric receptors with 5-HT3A subunits.53,54,59 The 

composition and stoichiometry of native heteromeric 5-HT3 receptors has yet to be 

determined.60,61 When h5-HT3A and h5-HT3B receptor subunits were epitope-tagged and 

expressed heterologously in tsA-201 cells they formed heteromeric receptors containing 

three 5-HT3B and two 5-HT3A receptor subunits with the order of B-B-A-B-A.62 This 

stoichiometry was determined by atomic force microscopy. However, the heteromeric 5-

HT3AB receptors have different biophysical properties than the homomeric 5-HT3A 

receptors.53,54 The pharmacological profile of the heteromeric receptors containing 5-

HT3C, 5HT3D, or 5-HT3E subunits in combination with 5-HT3A subunits is similar to 

homomeric 5-HT3A receptors or heteromeric 5-HT3AB receptors59,61 but the biophysical 

properties have yet to be determined. HTR3A-C genes are expressed both centrally and in 

the periphery, whereas HTR3D and HTR3E genes are only expressed in the 

gastrointestinal (GI) tract.61 In addition, 5-HT3C-E receptors appear to be absent in 

rodents.61 Within the CNS there are two main regions in which 5-HT3 receptors are 

expressed:  the dorsal vagal complex and the forebrain.63-65 The dorsal vagal complex 

contains the nucleus tractus solitarius (NTS), area postrema, and dorsal motor nucleus of 

the vagus nerve. These are important for the vomiting reflex.64 Within the forebrain, 
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human 5-HT3 receptor recognition sites have been located in the caudate nucleus, 

putamen, hippocampus, and amygdala.66-68 The caudate nucleus and putamen are 

involved in learning while the hippocampus and amygdala (part of the limbic system) are 

involved in memory processing.60 

3. Pharmacology and Biological Functions 

Several different in vivo and in vitro assays are employed for the identification of 

agonists and antagonists at the 5-HT3 receptors. The von Bezold-Jarisch reflex is one of 

the most prominent in vivo assays used.69 Upon administration of an agonist there is a 

cardiopulmonary reflex in which bradycardia is the most prominent response (the other 

two responses of the reflex are apnea and hypotension). An antagonist would be any 

agent that blocks the response of the agonist. Another in vivo assay used is the ferret or 

shrew emesis assay.70 Cisplatin is given to the animal to induce vomiting; an antagonist 

would block this effect, while an agonist would induce vomiting when administered 

alone. After an application of cantharidin to human skin a blister forms. When 5-HT is 

applied to the base of the blister it causes pain which can be reversed by 5-HT3 receptor 

antagonists.71 In vitro, the most commonly used assay is contraction of guinea pig ileum.2 

An agonist produces contraction while an antagonist would block the contraction of the 

agonist. Other in vitro assays include the rabbit vagus nerve (5-HT3 receptor agonists 

produce an increase in the amplitude of C-fiber action potentials), the isolated rabbit heart 

(release of noradrenaline and acetylcholine by 5-HT3 receptor agonists), and the uptake 

of [14C]guanidinium in NG108-15 cells (5-HT3 receptor agonists stimulate ion 
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accumulation).71 Some agents have been shown to be agonists in one assay while 

antagonists in another assay. For example, m-chlorophenylguanidine (mCPG; MD-354; 

2; Figure 4) behaves as an agonist in the von Bezold-Jarisch assay7 and emesis assays in 

shrews,8 but at higher doses behaves as an antagonist in the cisplatin-induced emesis 

assay.8 A novel functional assay was developed based on micromechanical measurement 

of membrane receptor binding.72 The deflection of microcantilevers is dependent on 

molecular binding and thus radiolabelled ligands are unnecessary.73 These particular 

microcantilevers are modified with a membrane preparation containing 5-HT3AS 

receptors and bend on the application of the 5-HT3 receptor agonist 5-HT or the 5-HT3 

receptor antagonist MDL-72222.72 Agonists and competitive antagonists compete for the 

binding on these membrane preparations. 

 

2 

Figure 4. The structure of m-chlorophenylguanidine (mCPG; MD-354). 

 5-HT3 receptors are concentrated in regions of the brain that are involved in the 

vomiting reflex, anxiety and depression, pain processing, and the reward system.5,6 The 

receptors are predominantly found in presynaptic regions with the exception of the 

hippocampus in which they are postsynaptic.5 This localization on nerve endings 
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contributes to 5-HT3 receptors modulating the release of neurotransmitters.5 Activation of 

5-HT3 receptors modulates the release of various neurotransmitters and neuropeptides 

including: dopamine, norepinephrine, glutamate, acetylcholine, GABA, and even 

serotonin.3,4 Presynaptic activation provides for the influx of Ca2+, whereas postsynaptic 

activation (i.e., in the hippocampus) provides for the influx of K+ and Na+.22 

There are six 5-HT3 receptor antagonists (Figure 5) on the global clinical market 

and five are effective in the treatment of chemotherapy-induced and radiation-induced 

emesis (i.e., ondansetron (3), granisetron (4), tropisetron (5), dolasetron (6), and 

palonosetron (7)).5 These agents are ineffective against motion sickness and 

apomorphine-induced emesis.6,74 They induce a complete blockade of both central and 

peripheral 5-HT3 receptors. The sixth available 5-HT3 receptor antagonist on the market 

is alosetron (8) which is used for the treatment of irritable bowel syndrome (IBS).5 

Recently, the application for the approval by the FDA of cilansetron was withdrawn, but 

it is a 5-HT3 receptor antagonist also used in the treatment of IBS.75 

 5-HT3 receptors have been implicated in IBS and constipation. In diarrhea-

prominent IBS, the 5-HT3 receptor antagonist, ondansetron (3), has been shown to 

alleviate symptoms but can also cause excessive constipation.76 It is thought that 5-HT3 

receptor partial agonists would be able to alleviate the symptoms without causing side-

effects.76 Constipation, which is normally treated by laxatives that cause side-effects, can 

also be treated by 5-HT3 receptor agonists.77 
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Figure 5. Clinically available 5-HT3 receptor antagonists: ondansetron (3), granisetron 
(4), tropisetron (5), dolasetron (6), palonosetron (7), and alosetron (8). 
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 5-HT3 receptors are located in the dorsal horn as well as in other regions involved 

in pain modulation.78 Stimulation of these receptors produces an antinociceptive effect.5 

MD-354 (2), a 5-HT3 receptor partial agonist, has been shown to selectively potentiate 

the antinociceptive action of clonidine in the mouse tail-flick assay without potentiating 

clonidine’s sedative effects.79 

In the last decade, 5-HT3 receptors have also been implicated in depression.80 

Ondansetron (3), a 5-HT3 receptor antagonist, has been shown to be active as an 

antidepressant in both the tail suspension and forced swim tests (for a detailed description 

see Section 7) in mice (Swiss 0.01 – 0.1 μg/kg, ip; albino, 0.25 – 2 mg/kg, ip).15,17 In 

earlier studies, however, ondansetron (3) (0.01 μg/kg, ip) had been shown to be inactive 

in the mouse forced swim test by itself but potentiates the sub-active doses of the 

antidepressants fluoxetine (16 mg/kg), citalopram (16 mg/kg), and fluvoxamine (8 

mg/kg).16 In another study, the 5-HT3 receptor antagonist bemesetron (9) (Figure 10) has 

been shown to be active by itself (3 mg/kg, sc) and at inactive doses (1 mg/kg, sc) in 

combination with inactive doses of ketamine (12.5-25 mg/kg, sc) in the mouse tail 

suspension test (C57BL/6J/Han).13 The exact involvement of 5-HT3 receptors in 

depression has yet to be identified. However, Bhatnager et al.81 demonstrated that there 

are differences between wild-type (WT) and 5-HT3 receptor knock-out (KO) male and 

female mice in the forced swim and the defensive withdrawal tests (light-dark test). In the 

mouse forced swim test, KO females exhibited increased behavioral indices of depression 

type behavior in comparison to WT females, thus showing that 5-HT3 receptors do play a 
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role in depression. In addition, single nucleotide polymorphisms on the HTR3B gene have 

been linked with major depression.82 

 5-HT3 receptor antagonists may also be effective in influencing the reward system 

of drug abuse because of the modulation of dopamine.5 Other possible clinical 

implications for 5-HT3 receptor antagonists include cognitive functions, schizophrenia, 

satiety, and anxiety.5 

4. Agonists 

 Since serotonin (1; 5-HT3 Ki ≈ 1000 nM) is a tryptamine, the first ligands studied 

were other tryptamine analogs. Methylation of the indole nucleus of 5-HT (e.g., 2-

methyl-5-hydroxytryptamine; 10; Ki ≈ 1300 nM) (Figure 6) was found to result in an 

agent that was less potent but more selective than 5-HT as a 5-HT3 receptor agonist.83,84 

However, 10 is rapidly metabolized and has difficulty crossing the blood-brain barrier 

(BBB).85 Methylation of the terminal amine was also examined.86,87 N-Monomethyl-5-

HT was shown to be active in the depolarization of superior cervical ganglion cells (it has 

an equipotent molar ratio (epmr) of 1.3 relative to 5-HT) while N,N-dimethyl— (11) and 

N,N,N-trimethyl—5-HT (5-HTQ; 12) were found to have increased activity (empr of 0.08 

and 0.01, respectively).87 Similarly, in binding affinity assays, 11 and 12 were found to 

bind with enhanced affinity (Ki ≈ 280 nM and 75 nM, respectively) relative to 5-HT.86 5-

HTQ (12) has a permanent positive charge that was well tolerated by 5-HT3 receptors (Ki 

≈ 75 nM), but 5-HTQ does not readily cross the BBB.86 Longer terminal amine 

substituents and locking the terminal amine into a ring abolished affinity.86 
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            10                11                   12 

Figure 6. The structure of methylated analogs of 5-HT. 

 Another of the first agonists investigated were the arylpiperazines (Figure 7).7,88 

Quipazine (2-(1-piperazinyl)quinoline; 13; Ki ≈ 3 nM) was the first of this class to 

demonstrate 5-HT3 receptor binding.89 Quipazine (13) was used as a lead compound to 

develop two general series: bicyclic and monocyclic arylpiperazines. Phenylpiperazine 

itself binds with low affinity (Ki ≈ 3000 nM) at 5-HT3 receptors.7 The 3-position of 

phenylpiperazine was shown to be important for binding as demonstrated by the impro- 

 
  

Figure 7. The structure of a few arylpiperazine analogs. 

13 14 

15 
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ved affinity of 3-chlorophenylpiperazine (Ki ≈ 62 nM).7 However, the corresponding 3-

CF3 analog displayed decreased affinity (Ki ≈ 1390 nM).7 The affinity of 3-

chlorophenylpiperazine could be mimicked by its naphthyl analog 1-(2-

naphthyl)piperazine (2-NP; 14; Ki ≈ 32 nM).88 Methylation of the terminal piperazine 

nitrogen atom of quipazine further increased binding affinity and selectivity (NMQ; 15; 

Ki ≈ 2 nM).88 Tricyclic derivatives have also been studied.90-92 Quite a few 

arylpiperazines have been shown to bind at 5-HT3 receptors; some have been shown to be 

agonists and some have been shown to be antagonists.83 However, none of them have 

been shown to be highly selective for 5-HT3 receptors because they also show affinity for 

other serotonin receptors93,94 and the serotonin reuptake transporter (SERT).95 

 The first non-tryptamine, non-arylpiperazine agonist ligand that demonstrated 

selectivity for 5-HT3 receptors was phenylbiguanide (PBG; 16; Ki ≈ 1000 nM) (Figure 8); 

despite its low affinity, PBG was shown to be more selective than early 

arylpiperazines.7,87 PBG is a selective low affinity agonist and arylpiperazines are higher 

affinity non-selective agents. Although there was no evidence suggesting that PBG was 

binding in the same manner as arylpiperazines, the assumption that they use the same 

aromatic site served as the starting point for the investigation of novel analogs of PBG. If 

they bind in a similar manner, then it might be possible to use the structure-affinity 

relationships (SAFIR) of arylpiperazines to enhance the affinity of the arylbiguanides. 

Two novel arylbiguanides were looked at initially, 1-(3-chlorophenyl)biguanide 

(mCPBG; 17; Ki ≈ 17 nM) and 1-(2-naphthyl)biguanide (18; Ki ≈ 12 nM).7,93 Both have 
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high affinities. mCPBG not only displayed partial agonist characteristics in functional 

studies (i.e., rabbit bladder preparation and von Bezold-Jarisch reflex)7 but was shown 

that in a competition for binding to 5-HT3 receptors mCPBG inhibited [3H]GR67330 with 

100 times higher affinity than 5-HT (1) or PBG (16).96 PBG and mCPBG have been two 

of the most widely used 5-HT3 receptor agonists even though they may not penetrate the 

BBB.97 Bachy et al.97 found that both PBG and mCPBG displayed poor brain penetration 

in mice because they did not displace the binding of [3H]granisetron in an ex vivo 

binding experiment. In addition, Rahman et al.9 showed that both possess low 

octanol/water partition coefficients. In contrast, Kilpatrick and Rogers98 have shown that 

mCPBG displaces [3H]GR65630 in rat entorhinal cortex in an ex vivo binding study. 

Moreover, Steward et al.99 have used [3H]mCPBG to label 5-HT3 receptor recognition 

sites in rat brain, which would also indicate that mCPBG does cross the BBB. More 

selective agonists have since been developed (e.g., 2,3,5-tri-Cl-PBG, Ki = 0.4 nM)100; 

however, mCPBG is still commonly used. A wide variety of substituents on the 

phenylbiguanide ring have been investigated but will not be discussed here.7,83,101 

 Using a deconstruction-reconstruction-elaboration approach, the elements needed 

for binding of mCPBG (17) at 5-HT3 receptors were evaluated.7,100 In the deconstruction-

reconstruction-elaboration approach all substituents from a ligand that bind well to a 

particular receptor are removed and then the ligand is reconstructed by re-introducing 

each of the original substituents individually.102 This approach allows for each substituent 

to be evaluated for its effect on binding affinity and/or receptor selectivity.102 The 
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resulting ligand is elaborated on to explore new substituents and their role on binding 

affinity and/or receptor selectivity.102 During the elaboration process N,N-Dimethylation 

of the terminal amine of the biguanide moiety was found to abolish affinity.7 Replacing 

the N2 nitrogen atom (Figure 8) of mCPBG with an oxygen atom greatly decreased 

affinity.7 Furthermore, removal of the N4 nitrogen atom abolished affinity.7 The N-(2-

phenylethyl)guanidine analog binds with high affinity (Ki ≈ 40 nM), indicating that the 

   

          16                17               18 

Figure 8. The structure of phenylbiguanide analogs. 

biguanide moiety may not be required for binding.7 Upon further deconstruction of 

mCPBG, the biguanide function was shortened to a guanidine yielding a new class of 5-

HT3 receptor agonists—the phenylguanidines (PG). The first member of this class was 3-

chlorophenylguanidine (mCPG; MD-354; 2; Ki ≈ 35 nM) which has been shown to also 

be an agonist in the von Bezold-Jarisch assay and the rabbit bladder prepartion.7 Various 

aryl substituents have been investigated by our laboratory (Table 2).7,100 Parallel changes 

in the structures of PBGs and PGs led to parallel shifts in affinity suggesting that the two 
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series bind in a similar manner.100 For example, removal of the 3-chloro group to give the 

parent PG (27) reduced affinity (Ki ≈ 2340 nM); likewise removal of the 3-Cl group from 

mCPBG (17) to generate PBG (16) decreased affinity (Ki ≈ 1000 nM). Positional changes 

of the chloro group (i.e., 2-Cl and 4-Cl) also decreased affinity  (19-20, 28-29), but not as 

Table 2. Binding affinities of several arylbiguanides and arylguanidines.7,8,101 

R 
16 ≈1,000.0 H 27 2,340.0 
17 17.0 3-Cl 2 35.0 
19 62.0 2-Cl 28 190.0 
20 200.0 4-Cl 29 320.0 
21 220.0 3-NO2 30 85.0 
22 780.0 3-CH3 31 6,520.0 
23 700.0 3-CF3 32 5,700.0 
24 12.0 3,4-di-Cl 33 3.1 
25 1.8 3,5-di-Cl 34 5.0 
26 2.7 3,4,5-tri-Cl 35 0.7 

 

dramatically as removal of the chloro group. Replacing the 3-chloro group with an 

electron-donating group (i.e., 3-methyl; 22, 31) or a better electron-withdrawing group 

(i.e., 3-CF3: 23, 32) resulted in a decrease in affinity as shown in Table 2. Replacing the 

3-chloro group with the electron-withdrawing group 3-NO2 (i.e., 21, 30) resulted in 

slightly decreased affinity. Multiple chloro groups (i.e., 3,4-di-Cl, 3,5-di-Cl, 3,4,5-tri-Cl) 

increased affinity (24-26, 33-35). 

Ki (nM) Ki (nM) 
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 Based on the binding profile of several arylguanidines at 5-HT3 receptors a 

pharmacophore model was developed. A few pharmacophore models for agonists and 

partial agonists have been developed but these were for other classes of 5-HT3 receptor 

ligands.103,104 Dukat developed the current working pharmacophore for arylguanidines 

and arylbiguanides (Figure 9).83 The three main components of the working 

pharmacophore for arylguanidines and arylbiguanides are i) an aromatic ring, ii) an 

adjacent  nitrogen  atom,  N1,  to  the  ring,  and  iii)  a  terminal  amine;  with  distances 

 

Figure 9. Dukat’s pharmacophore for the binding of arylguanidines and arylbiguanides at 
5-HT3 receptors. 83 
 

between the aromatic ring centroid and the adjacent nitrogen 2.7 Å (a) and the distance 

between the centroid and the terminal amine between 4.5 and 4.9 Å (b). Substitution at 

the meta and para positions are tolerated and can enhance affinity depending on their 

lipophilic and electronic character. Steric bulk does not seem to be tolerated near the N1 

nitrogen atom. 



www.manaraa.com

24 
 

5. Antagonists 

In the late 1970s, Fozard reported metoclopramide and cocaine (which was also 

reported by Gaddum and Picarelli)2 to be weak antagonists of the 5-HT-M receptor.105 In 

1983, bemesetron (MDL-72222; 9) was first synthesized as an analog of cocaine.106 

Shortly after in 1985, workers at Sandoz identified tropisetron (ICS 205-930; 5) as a 5-

HT3 receptor antagonist.84 Since then, several hundred other compounds have been 

developed as 5-HT3 receptor antagonists with a wide range of classifications.107-109 The 

two overarching classes are the benzamides or benzoate esters, and 6,5-heteroaromatics. 

Benzoate esters (i.e., bemesetron; 9; Figure 10) and benzamides (i.e., zacopride; 

37; Figure 10) were developed, as mentioned earlier, as analogs of cocaine.105 Starting 

with benzoate esters, the endo isomer was found to be more active than the exo isomer.106 

Substitutions at the 3-position were favored over the 4-position, and a 3,5-di substituted 

analog (e.g., bemesetron; 9; pA2 = 9.3 rabbit heart) was found to be more active than just 

the 3-substituted analog (as reviewed by King).108 However, the 3,5-dichlorobenzamide 

analog was reported to be more potent than the 3,5-dichlorobenzoate analog.110 

Expanding further, it was found that 2-OCH3, and 4-NH2 groups increased potency 

significantly leading to zacopride (37; Bezold-Jarish, ID50 0.7 μg/kg i.v.) and renzapride 

(38) (Figure 9) (as reviewed by King).108 
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               9                    37              38 

Figure 10. The structure of a few benzoate ester and benzamide 5-HT3 receptor 
antagonists. 

 

The largest class, 6,5-heteroaromatics, includes the carbazole ondansetron (3; Ki ≈ 

7.59-7.76 nM), the indole tropisetron (5; Ki ≈ 3.80-5.50 nM) and the indazole granisetron 

(4; Ki ≈ 2.34-3.24 nM).111 Richardson et al. identified tropisetron (5) as the first highly 

potent 5-HT3 receptor antagonist that includes an indole ring and an endo(tropane) side 

chain.84 Variations on the side chain led to the development of dolasetron (6).108 

Modifications of the indole ring to indazole produced compounds similar to granisetron 

(4).108 In the indazole series, the 1-CH3 analog showed increased potency unlike with the 

indole series.108 In the indolylpropanone series, substitutions of the terminal amine with  

–N(CH3)2 (pA2 = 6.5, rat vagus nerve) and –imidazole (pA2 = 7.61, rat vagus nerve) were 

shown to be active; while –pyrazole and –triazole were inactive.112 Substitutions at the 2- 

and 4-position of the imidazole of an imidazolyl indolylpropanone were investigated to 

prevent interactions with Cytochrome P450.112 The methyl group at the 2-position of the 

imidzole was shown to be the most potent N-linked imidazolyl indolylpropanone 
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investigated so far in the Bezold-Jarisch assay.112 Conformationally constraining the 

carbonyl to the indole ring to form an N-linked imidazolylmethyl tetrahydrocarbazolone 

provided a more potent analog (i.e., ondansetron; 3; pA2 = 8.6 rat vagus nerve) than the 

unconstrained analog (i.e., the 2-CH3 imidazolyl indolylpropanone analog; pA2 = 8.0 rat 

vagus nerve).112 Ondansetron (3) had enhanced oral activity (ED50 = 7 μg/kg, po) in the 

rat and a long duration of action (>3 h at 30 μg/kg, iv) in the Bezold-Jarisch assay in the 

cat.112 Unusually, both enantiomers of ondansetron had similar activity in vitro ((S)-

enantiomer pA2 = 8.55; (R)-enantiomer pA2 = 8.95, rat vagus nerve).112 In determining 

whether a N-linked imidazole was preferred, several C-linked imidazole analogs were 

investigated (i.e., GR65630; pA2 = 9.9; alosetron; 8; pA2 = 10.2, rat vagus nerve).112 This 

class is of particular interest since it includes all but one of the clinically available and 

highly selective antagonists for 5-HT3 receptors (Figure 5). The remaining clinically 

available agent is a 6,6,6-heteroaromatic compound (i.e., palonosetron; 7) (Figure 5). 

6. Quantitative Structure-Activity Relationships 

The concept of quantitative structure-activity relationships (QSAR) was 

developed by Hansch on the basis that biological activity is a function of chemical 

structure.113,114 By structure, Hansch considered the lipophilic, electronic, and steric 

effects of a molecule. A Hansch analysis is performed by inspecting the linear regression 

of the biological activity (e.g., pKi) and various structural parameters (e.g., σ, π, MR, L, 

B1, B5) (Table 3). Examples of lipophilic parameters include partition coefficients (log 

P) and the substituent’s hydrophobicity constant (e.g., π).115 Electronic parameters 
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include Hammet constants (i.e., σm and σp),
115 dissociation constants,115 and dipole 

moments.116 Steric parameters include Taft’s substituent constant (Es),
117 Verloop 

parameters (e.g., L, B1, B5),118,119 and molar refraction (MR).115 Molar refraction and 

complete molar refraction (CMR) can also be considered a polarizability parameter along 

with the number of valence electrons (NVE),120 the parachor constant (Pc),121 and the 

polarizability values.120 

Table 3. Definition of various Hansch analysis parameters. 

Parameter Definition 
π Hydrophobicity constanta 
σm Hammett constant, electronica 
L Length between substituent and parent compoundb 
B1 Shortest width of the substituentb 
B5 Longest width of the substituentc 
MR Molar refraction of the substituent;a

     2 21 / 2 * /n n MW      

Vol Solvent accessible volumed 
NVE Number of valence electrons;e 

H = 1; C = 4; N = 5; O = 6, Halogen = 7 
CMR Complete molar refractionf 
MV Molar volume;g 

/MW   
Pc Parachor based on surface tension and MV;g

 1/4 /MW   

Polarizability Polarizability of the compoundg 

aHansch, et al.115 
bVerloop, et al. 118 
cTipker and Verloop119 
dMeasured using Chimera 
eVerma et al.120 
fCalculated using ChemDraw 
gCalculated using ChemSketch
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 Comparative molecular field analysis (CoMFA) is another method of QSAR 

analysis. A 2001 study by Dukat et al. on the binding of arylguanidines and 

arylbiguanides was conducted using 33 compounds spanning a 10,000-fold Ki range.100 

The relationship between parallel substituted arylguanidines and arylbiguanides was 

nearly linear (i.e., r = 0.932, n = 9), so it was considered acceptable to use a combination 

of these two classes of agents in the same study.100 The results showed that binding to 5-

HT3 receptors was sensitive to the electronic character of the 3-position and that the 

lipophilic character of the 4-positon might also contribute to binding. However, these 

compounds are not co-planar making the two meta-positions different; with a sample size 

this small (n = 33) the investigators were unable to determine which meta-position is 

involved in binding.100 In CoMFA studies the q2 value is the predictability of a model 

based on cross-validation,122 and a good q2 value is considered to be greater than 0.6.123 

The r2 value is the fit of the binding affinities; the squared correlation coefficient is 

usually high when the ligands are well aligned. The q2 value for this CoMFA study was 

0.584 and the r2 value was 0.851.100 Based on the results 79.5% steric and 20.5% 

electronic effects impacted the binding at 5-HT3 receptors.100 

 In 2003, Glennon et al.124 performed a QSAR study on the binding of 

arylguanidines and arylbiguanides at 5-HT3 receptors. As part of this study the authors 

found no correlation between affinity and π3, but that there is some relationship between 

affinity and σm for the 3-monosubstituted arylguanidines.124 As for the 4-monosubstituted 

arylguanidines it was found to be the opposite of the 3-monosubstituted compounds; 
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there was a relationship between affinity and the hydrophobicity constant π4, but not 

between affinity and the electronic constant σp.
124 Overall, the electron withdrawing 

nature of the 3-position substituent and the lipophilic nature of the 4-position substituent 

contribute to the affinity of arylguanidines.124 In addition, the polarizability of the 

arylguanidines seems to play a role in the affinity of these ligands for 5-HT3 receptors.124 

7. Behavioral Assays for Antidepressants 

Because a portion of the work to be described herein involves the possible 

antidepressant actions of 5-HT3 receptor ligands, it is appropriate to describe a few assays 

that have been used previously to evaluate possible antidepressant activity and are 

applicable to the current investigation. 

In the late 1970’s Porsolt developed a behavioral assay for the screening of 

antidepressants—the forced swimming test (FST).125,126 This test is based on the 

observation that a mouse placed in water swims (perceivably to escape) then alternates to 

a period of immobility. Antidepressants decrease the amount of time the mouse spends 

immobile and increase the amount of time the mouse spends swimming. However, there 

are a number of issues with the FST that make it less than ideal. Since the water is 

approximately at room temperature (23-25 °C) and the mouse’s body is quite small, 

hypothermia can occur.127 With this test, there is an inherent need for the animals to be 

able to swim; some genetically altered mice have decreased motor function and cannot 

swim.128 The FST has also been shown to be ineffective in certain strains of mice (i.e., 

NMRI, C57BL/6J, and DBA2) for almost all known types of antidepressants.129 In 
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addition, the FST has been shown to display inconsistent results regarding selective 

serotonin reuptake inhibitors (SSRIs).130  

The mouse tail suspension test (TST) is a behavioral assay developed by Steru et 

al.131 based on the observation that a mouse suspended by its tail will exhibit two types of 

alternating behaviors: a waiting phase characterized by immobility or passive swaying, 

and a searching phase characterized by running motions, body jerks, and body torsions in 

which the mouse attempts to catch its tail. This test, similar to the FST, is based on 

changes in immobility time.126 A mouse given an antidepressant will exhibit lower 

immobility times than a mouse given saline; the mouse will spend more time in the 

searching phase. With the TST, the mice become immobile more quickly over the course 

of the test; in the FST, immobility generally occurs in the last half of the test, but in the 

TST immobility can occur at any point.128 However, immobility periods are shorter in 

duration over the course of the TST.128 Occasionally, false positives are encountered if 

the drug given causes an overall increase in motor activity and which can be interpreted 

as decreased immobility time (see below for greater detail; “Locomotor activity”). The 

TST also is more sensitive to lower doses of drugs.131 

In the few studies reported to date, the 5-HT3 receptor antagonists ondansetron (3) 

and bemesetron (9) have been shown to be active in these types of behavioral tests for 

antidepressants leading investigators to believe that 5-HT3 receptors may be involved in 

depression.13,15,17 However, in two of the four FST assays, ondansetron was found to be 

inactive (Table 4). Bemesetron has only been examined in the TST. In one investigation, 
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the 5-HT3 receptor agonist, SR 57227A, was studied both in mouse and rat FST and was 

found to be effective at high doses.14 Table 4 summarizes the 5-HT3 receptor ligands that 

have been tested for antidepressant activity in rodents. 

8. Locomotor Activity Assay 

The TST and FST are only indicative of antidepressant activity. Decreased 

immobility time may also occur when the overall movements are increased. This increase 

in generalized motion can give a false positive result in the TST and FST. Using a 

locomotor activity assay, the overall motion can be investigated in relation to vehicle 

(i.e., saline). This test is conducted in square, transparent chambers surrounded by 

infrared photo detectors. These photo detectors are located near the floor of the chamber 

(~ 1.75 cm above the floor), as well as, ~ 6.5 cm above the floor of the chamber. Using 

the breaks in the infrared beams, a computer program identifies precisely where the 

mouse is located in the chamber and the type of motion. If the compound in question has 

increased general motion relative to the vehicle, it may indicate that the decreased 

immobility times of the FST or TST are not because of an antidepressive effect but to an 

overall increase in movement. 
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III. Specific Aims and Rationale 

 The arylguanidine series of 5-HT3 receptor ligands has been examined by Dukat 

and co-workers9,100,124 in the past to determine the type of substituents favored for 

binding. MD-354 (2) is a bi-planar molecule where the guanidine function is skewed 

relative to the aromatic ring; therefore, the meta-positions are non-equivalent. Several 

series of compounds will be synthesized to investigate the role of meta-position 

substituents in binding. One series will investigate the size of the substituent while 

another will investigate which meta-position is important. 

Based on prior QSAR studies (see Background), steric and electronic effects at 

the 3-position, but not lipophilic effects at the 3-position, can influence the fit (i.e., 

affinity) of the ligand in the 5-HT3 receptor binding pocket. These previous studies 

indicated meta-position substituents are important for binding. Since the 3-Cl analog 

(MD-354, 2; Ki = 32 nM), which bears an electron-withdrawing substituent, binds with 

high affinity, but analogs with electron-donating groups, as seen with the 3-CH3 (31; Ki = 

6520 nM) and 3-OCH3 (39; Ki = 1600 nM) analogs, bind with reduced affinity, it might 

be concluded that electronic effects play a significant role.124 However, the 3-CF3 analog 

(32; Ki = 5700 nM), an analog containing a stronger electron-withdrawing substituent 

than a chloro group, binds with reduced affinity relative to MD-354 (2) which may 

indicate that the possibility of steric interactions or bulk limitation.124 It may be the size 
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or the shape of the –CF3 group that detracts from binding. The –Cl substituent has a 

spherical shape whereas a –CF3 substituent does not; its shape may not be tolerated by 

the receptor. The –CF3 group occupies a slightly larger volume of space than the –Cl 

group (Table 5) which may also not be tolerated by the receptor. One of the aims of this 

project is to synthesize other 3-halogenated analogs of MD-354 (2) and to examine their 

electronic and steric effects on binding affinity. Fluoro, bromo, and iodo groups are 

electron-withdrawing groups and together with the –Cl and–CF3 groups, provide a range 

of electron-withdrawing substituents of graded size and relatively similar electron-

withdrawing capability (Table 5). Examination of the –F, –Br, and –I analogs (i.e., 42-

44), in comparison with the –Cl (2) and –CF3 (32) compounds (as well as with the parent 

unsubstituted molecule 27), will provide information about the importance of the steric 

and electronic contribution of 3-position substituents to affinity. With the halogen 

analogs, substituent size can be varied while keeping shape and electronic character 

relatively constant (Figure 11). Therefore, compounds 42-44 will be synthesized and 

examined for comparison with 2, 27, and 32. 

A Hansch analysis of 3-substituted analogs might assist in determining which 

structural features may be important for binding at 5-HT3 receptors. The relationship 

between pKi and various parameters (i.e., π, σ, L, B1, B5, MR, complete molar refraction 

(CMR), volume, molar volume (MV), NVE, Pc, and polarizability) will be investigated 

through a Hansch analysis. Correlation coefficients from linear regression analysis would 

indicate the possible significance of those parameters. 
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Figure 11. Superimposition of the Van der Waals surface of 3-CF3 (cyan), 3-I (purple), 
3-Br (orange), 3-Cl (pink), 3-F (green), and 3-H (black) PGs (left). Superimposition of 
the Van der Waals surface of 3-CF3 (cyan) and 3-Cl (pink) PGs (right.) 

Table 5. Electronic, lipophilic, and steric effects of 3-substituted arylguanidines. 

 

 R πa σa Volumeb Ki (nM)c 
27 H 0.00 0.00 121.7 2,340 
2 Cl 0.71 0.37 144.8 35 

30 NO2 -0.28 0.71 143.9 85 
31 CH3 0.56 -0.07 138.3 6,520 
32 CF3 0.88 0.43 150.5 5,700 
39 OCH3 -0.02 0.12 145.6 1,600 
40 CN -0.57 0.56 139.2 123 
41 OH -0.67 0.12 126.8 2020 
42 F 0.14 0.34 125.6  
43 Br 0.86 0.35 165.6  
44 I 1.12 0.35 197.7  

a π and σ values as reported by Hansch et al.115 
b Volume is the solvent accessible volume measured using Chimera. 
c Results from a previous study.7,100

N NH2

NH2

R
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Since MD-354 is bi-planar, it can exist in multiple conformations. In two of the 

possible rotamers, the substitutents can reside at either one of two meta-positions (i.e., the 

3- or 5-positions) (Figure 12). By constraining the guanidine function, it can be 

determined which of the two meta-positions is more important for binding (Figure 13). 

Constraining the guanidine to a five-membered ring (e.g., as with 45) sharply decreased 

binding affinity (Ki = 725 nM) relative to MD-354 (2; Ki = 35 nM).9 Previous literature 

reported the synthesis of what was thought to be 2-amino-7-chloro-3,4-

dihydroquinazoline (46);9 this was later shown to actually be 2-amino-6-chloro-3,4-

dihydroquinazoline (47).132 In addition, 2-amino-5-chloro-3,4-dihydroquinazoline (48) 

has been synthesized previously.133 Since 2-amino-7-chloro-3,4-dihydroquinazoline (46) 

has not been synthesized previously, it will be targeted for synthesis by this investigation 

to complete the series. 

 

Figure 12. Representation of a rotatable bond in MD-354 (2). 

 

Increasing the ring size constraining the guanidine allows for an increase in the 

angle  of the aromatic  and guanidine planes,  so the seven-membered  constrained analog 
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45 46 7-Cl 
47 6-Cl 
48 5-Cl 

49 

Figure 13. Structure of conformationally-constrained analogs of MD-354. 

 

(2-amino-8-chloro-1,3-benzodiazepine; 49; Figure 13) will also be synthesized. In 

addition, the different ring sizes allow for small adjustments in the centroid-to-amine 

distance which has been shown to be important for 5-HT3 receptor binding (Figure 9) 

(MD-354 centroid-to-amine distance was previously calculated to range from 3.7 to 4.9 

Å; 45 centroid-to-amine distance was previously calculated to be 4.5 Å; 46-48 centroid-

to-amine distance was previously calculated to be 4.9 Å).9 For the purpose of this study, 

the ligands were built in Sybyl 7.3, given new charges and geometries calculated with 

molecular orbital package (MOPAC), and the aromatic centroid to primary amine 

distances were measured (Table 6). The aromatic centroid to primary amine (N2) 

distance of MD-354 (2) is calculated to be 5.1 Å. The aromatic centroid to primary amine 

distance of 45 is calculated to be 4.5 Å. The aromatic centroid to primary amine distance 

for 46-48 is calculated to be 5.0 Å and the aromatic centroid to primary amine distance of 

49 is calculated to be 5.1 Å. Other methods of investigating the skewness of these 

constrained analogs are to examine the height above the plane, the plane angle and the 
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torsion angle (Table 6). The height above the plane for the nitrogen atoms indicate how 

much out of the plane of the aromatic ring the guanidine is. Since the guanidine function 

is in a separate plane from the aromatic ring the angle of these planes can also be 

calculated. The torsion angle is the twist of the molecule while going from the guanidine 

portion to the aromatic ring. 

Table 6. Measurements of biplanarity of MD-354 and its constrained analogs. 

 

 

Compound 
Amine height 
above plane 

Aromatic 
centroid to 

primary amine 
distance Plane angle Torsion angle 

       2 0.21683 Ǻ 5.122 Ǻ 34.91° 149.9° 
     45 0.00327 Ǻ 4.537 Ǻ   0.06° 180.0° 
     46 - 48 0.16662 Ǻ 5.042 Ǻ   8.48° 189.9° 
     49 0.24949 Ǻ 5.133 Ǻ   7.13° 184.4° 

 

Another goal of this work will be to confirm whether or not 5-HT3 receptor 

ligands produce an antidepressant effect in animals. Depression has a life-time prevalence 

of 17% in the United States.134 Current treatments for depression are fully effective for 

30% of patients.135 The antidepressants currently available (i.e., tricyclic antidepressants 

(TCAs), selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine 

reuptake inhibitors (SNRIs)) have a long onset of action (usually two or more 

weeks).136,137 These drawbacks indicate a need for a new understanding on how to treat 
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depression. Although studies are scant, two 5-HT3 receptor antagonists (i.e., ondansetron 

and bemesetron) and the 5-HT3 receptor agonist (i.e., SR 57227A) have been shown to 

behave as potential antidepressants in animal studies (Table 4). If 5-HT3 receptors play a 

role in depression then different structural classes of 5-HT3 receptor agents or different 

receptor interactions may be able to elicit the same response. To determine if the novel 

series of quinazoline ligands behaves in the same manner, several analogs will be tested 

using the mouse tail suspension test for antidepressant activity. The parent compound, 

MD-354 (2), will also be tested. Tricyclic antidepressants (i.e., desipramine and 

imipramine), an SSRI (i.e., fluoxetine), and a 5-HT3 receptor antagonist (i.e., 

ondansetron) will be used as controls. Statistical analysis will be performed to determine 

the statistical significance of any decreases in immobility time relative to saline using a 

one-way analysis of variance (ANOVA) test. Overall locomotor activity will be 

examined at any doses of those drugs that display significantly lower immobility times 

than saline to determine if the effect is because of hyperactivity or not. 

A recurring issue with most 5-HT3 receptor ligands is their inability to cross the 

BBB. Compounds with log P values ranging from 1.5 to 2.5 generally can penetrate the 

BBB.138 MD-354 (2), PG (27), 3,4,5-tri-Cl-PG (35) and mCPBG (17) have been shown to 

have  log P values of -0.64, -1.32, 1.16, and -0.38, respectively, by the shake-flask 

method of measuring the concentration of drug in the aqueous layer of an aqueous 1-

octanol solution, which would indicate that these compounds should not be able to 

readily cross the BBB.9 Supporting this, Bachy et al.91 showed that PBG and mCPBG 
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were unable to displace [3H]granisetron in an ex vivo study indicating that arylbiguanides 

probably do not cross the BBB. In contrast, Kilpatrick and Rogers98 showed that mCPBG 

was able to displace [3H]GR65630 in rat entorhinal cortex ex vivo and Steward et al.99 

used [3H]mCPBG to label 5-HT3 receptor recognition sites in the rat brain. These last two 

studies indicate that the arylbiguanide mCPBG does cross the BBB. Because the data are 

controversial, a new method is needed to determine if arylguanidines and arylbiguanides 

cross the BBB. Using ChemDraw to predict log P values, the predicted log P value for 

mCPBG is 1.28, which indicates that it is slightly too low for mCPBG to easily cross the 

BBB, supporting the shake-flask data. Whereas, the predicted log P value for MD-354 is 

1.43, which is closer to the threshold for easily crossing the BBB. Both of these predicted 

values are much higher than the shake-flask data. The determination of log P values using 

the shake-flask method is time consuming, requires a large amount of sample, and is 

subject to errors (i.e., sample impurities, inability to detect the sample, dissociation, 

decomposition, and stable emulsion formation).139 In addition, very high and very low 

partition compounds cannot be measured through the shake flask method.139  

Another method of determining the log P value is through the relative retention 

times using high performance liquid chromatography (HPLC) which requires much 

smaller quantities of sample and provides for better detection. The retention times of 

several compounds (i.e., imidazole, acetanilide, benzophenone, naphthalene, and 

diphenylamine) are determined relative to the retention time of uracil for various 

concentrations of aqueous acetonitrile. Values for the log of the capacity factor ( 'k ) are 
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calculated for each of these compounds at varying concentrations of acetonitrile and 

water (  0 0log ' log Rk t t t    ).140-142 For each compound, a plot of log 'k  versus the 

concentration of acetonitrile is used to calculate the 'log wk  (i.e., the log of the capacity 

factor in 100% water).140-142 These 'log wk  values can be plotted against experimental log 

P values from the literature to construct a standard curve. By identifying the 'log wk  value 

of unknown compounds the log P value can be determined using the standard curve 

obtained from the known compounds. This method will be implemented to determine the 

log P values of mCPBG and several arylguanidines. 

Different homology models of the h5-HT3A receptor can be built through various 

modes of construction. Each program uses different methods for developing models. 

Using the Biopolymer package of Sybyl, residues of a template can be mutated to the 

sequence of the target receptor. This is followed by optimizing the side-chain orientation 

with SCRWL. Another method is to use an alignment of the template and the sequence of 

the target, and allowing the program Modeller to generate multiple models at one time. 

By using docking programs (e.g., GOLD and AutoDock) and different standards, the 

models can be validated by mutagenesis data. Since arylguanidines have not been 

generally studied as a class of 5-HT3 receptor ligands, their possible binding modes have 

yet to be determined. In the present study, 5-HT3 receptor models will be constructed and 

docking studies performed with both GOLD and AutoDock. Based on the docking poses 
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of MD-354 and 5-HT, new ligands might be developed which encompass structural 

features that are beneficial for each. 

To summarize, the specific aims of the present work are: 

a) to synthesize various halogen-substituted arylguanidines, 

b) to determine the structural features important for binding through a Hansch 

analysis, 

c) to synthesize conformationally constrained arylguanidines, 

d) to evaluate the possible antidepressant activity of selected agents through the 

mouse tail suspension test, 

e) to determine the log P value of various arylguanidines, and 

f) to construct and validate a homology model of the 5-HT3 receptor. 

Overall, the aims of these studies are the rational design and synthesis of novel 5-

HT3 receptor agents that enter the brain, and an initiation of their pharmacological action. 
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IV. Results and Discussion 

A. Halogen Series 

1. Synthesis of N-(3-Fluorophenyl)guanidine Nitrate (42) 

N-(3-Fluorophenyl)guanidine nitrate (42), was synthesized in the same manner as 

MD-354 (2) (Scheme 1).143 N-(3-Bromophenyl)guanidine nitrate (43) and N-

(iodophenyl)guanidine nitrate (44) analogs were previously synthesized in our 

laboratory132 as nitrate salts and were available for our studies. The hydrochloride salt of 

the aniline was allowed to react with cyanamide in ethanol and heated at reflux. The 

hydrochloride salt of the arylguanidine was converted to the nitrate salt (i.e., 42) with 

ammonium nitrate. The structure was confirmed by IR spectrometry, 1H NMR 

spectrometry, and elemental analysis for C, H, N. 

Scheme 1.a 

 

50               42
 

aReagents and conditions: a. H2NCN, EtOH, reflux; b. NH4NO3, H2O.  

 

a, b 
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2. Binding Studies 

The three new arylguanidine analogs (42-44) were evaluated and MD-354 (2) was 

re-evaluated for binding affinity at recombinant mouse 5-HT3A receptors (Table 7) using 

[3H]LY 278,584. The –Br (i.e., 43) and –I (i.e., 44) analogs were found to bind with the 

highest affinity. MD-354 (2) was found to bind with a somewhat lower affinity than 

previously reported for binding affinity at cloned human 5-HT3AB native receptors.7 

Based on these results it can be concluded that the size of the electron-withdrawing 

substituent possibly plays a role in how well these compounds bind to the 5-HT3 receptor 

since compounds with smaller meta-substituents (i.e., –H (27; Ki = 2340 nM) and –F 

(42)) bind with decreased affinity and compounds with larger meta-substituents (i.e., –Br 

(43) and –I (44)) bind with increased affinity compared to the parent compound, MD-354 

(2). 

Table 7. Binding affinity of halogen series at the mouse 5-HT3A receptors. 

 

        R Ki (nM) (SEM)
42 F 1420 (105)
  2 Cl 166 (16)
43 Br 81 (10)
44 I 40 (5)

 

N NH2

NH2

R
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 This is the reverse of what was expected and suggests that meta-substituents 

larger in size than a chloro group are tolerated by the receptor. Since the –CF3 analog 

binds with lower affinity at the 5-HT3 receptors than any of the mono-halogenated 

analogs, but takes up less volume than –Br and –I it may be concluded that it is the shape 

and not necessarily the size of the –CF3 group that interferes with binding. The halogen 

substituents are spherical but the –CF3 substituent is not; a more spherical shape might be 

more tolerated. It might be noted that for the simple halogenated analogs shown in Table 

7, affinity increases as the lipophilicity (i.e., π value; see Table 5) increases. Likewise, 

affinity increases as substituent volume (see Table 5) increases. For example, there is a 

relationship between pKi and π (r = 0.997, n = 4; Figure 14) as well as with volume (r = 

0.920, n = 4; Figure 14). This trend holds if phenylguanidine 27 is included (r = 0.998, n 

=5; r = 0.934, n = 5; Figure 14). However, there are too few observations to draw any 

reliable conclusions. 

Figure 14. Linear regression plots of pKi versus π (left) and volume (right). The analyses 
including the unsubstituted compound 27 are shown in red, excluding the unsubstituted 
compound are shown in blue. 
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3. Hansch Analysis 

A Hansch analysis was performed on the 3-position monosubstituted 

arylguanidines to better identify electronic and steric effects that might be influencing 

their binding to the 5-HT3 receptor. The analysis was performed on the parameters (i.e., 

π, σ, L, B1, B5, MR, CMR, volume, MV, NVE, Pc, and polarizability) (Table 8) versus 

affinity (i.e., pKi). A linear regression analysis (Table 9) of each of these individual 

parameters using GraphPad Prism against pKi revealed statistically significant 

correlations (p < 0.05) with the electronic factor σ (n = 11, r = 0.730, F = 10.25; eq 2, 

Table 9; Figure 15), polarizability (n = 11, r = 0.704, F = 8.86; eq 12, Table 9; Figure 

16), solvent accessible volume (n = 11, r = 0.656, F = 6.80; eq 7, Table 9; Figure 16), and 

complete molar refraction (CMR) (n = 11, r = 0.670, F = 7.31; eq 9, Table 9; Figure 17). 

These linear regression analyses indicate that the electronic effect of the substituent, the 

polarizability of the molecule, the solvent accessible volume of the substituent, or the 

complete molar refraction of the molecule may play a role in how well the arylguanidines 

bind to the 5-HT3 receptor. 

Internal correlations between parameters can lead to collinearity. Multicollinearity 

may be or is a problem for these compounds with volume and polarizability (r = 0.742, n 

= 11), CMR and polarizability (r = 0.757, n = 11), and volume and CMR (r = 0.704, n = 

11)—since these three parameters are intercorrelated with each other it is expected that 

there is a problem with multicollinearity. 
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Table 9. Linear regression analysis results (n = 11). 

Equation          pKi =  r 
1    0.1467 0.2599 0.6721 1.642    0.185 

2    0.2230 0.06967 1.098 0.4401    0.730 

3    2.583 1.381 10.77 8.724MR    0.529 

4    0.2399 0.4358 1.333 2.753L    0.181 

5    0.3214 0.1425 1 0.2826 0.9004B    0.601 

6    1.085 0.7941 5 3.850 5.017B    0.414 

7    18.07 6.932 32.04 43.80volume    0.656 

8    0.2806 2.779 62.49 17.56NVE     0.034 

9    0.3263 0.1207 2.519 0.7624CMR    0.670 

10    0.1198 4.232 125.5 26.74MV    0.009 

11    14.82 8.242 244.3 52.07Pc    0.514 

12    1.334 0.4484 9.036 2.833polarizability    0.704 

 

 

Figure 15. Linear regression plot of pKi versus σm (r = 0.730; eq 2; Table 9). 
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Figure 16. Linear regression plots of pKi versus polarizability (r = 0.704; eq 12; Table 9) 
(top) and pKi versus volume (r = 0.656; eq 7; Table 9) (bottom). 
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Figure 17. Linear regression plot of pKi versus CMR (r = 0.670; eq 9; Table 9). 

 

In order to obtain statistically relevant results for each parameter analyzed, data 

on at least six compounds are required. Using compounds 2, 27, 30-32, 39-44, there are 

only eleven compounds and, therefore, only one variable can be investigated with 

statistical significance. Despite lacking statistical rigor, inclusion of a second variable 

might provide some clues as to which variables are simultaneously affecting binding 

affinity. A multiple linear regression analysis was performed using GraphPad’s InStat 

program on σ, volume, CMR, and polarizability versus pKi (Table 10). There is no 

internal correlation between volume (r = 0.851, n = 11), CMR (r = 0.855, n = 11), or 

polarizability (r = 0.867, n = 11) and σ; since they are independent of each other, any 

relationship of σ and the other three parameters may show an actual relationship together 

with the binding affinity. There is a good correlation (p < 0.01) with σ and polarizability 
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versus pKi (n = 11, r = 0.867, F = 12.05; eq 15, Table 10), σ and volume versus pKi (n = 

11, r = 0.851, F = 10.54; eq 16, Table 10), and σ and CMR versus pKi (n = 11, r = 0.855, 

F = 10.86; eq14, Table 10). Based on the results of these analyses, the electron-

withdrawing nature and the size, polarizability, or volume of the substituent at the 3-

position impact binding affinity. Since there are multiple linear regression correlations, 

the later three parameters are impacting binding affinity and not just one individual 

parameter. 

Table 10. Multiple linear regression analysis results (n = 11). 

Equation          pKi =  r 
13 -2.010CMR + 0.9141polarizability – 0.4960 0.757 
14 1.749σ + 1.118CMR + 0.6070 0.855 
15 1.648σ + 0.3036poloarizability + 0.4594 0.867 
16 1.846σ + 0.01917volume + 2.893 0.851 
17 -0.005657volume + 0.4817polarizability – 1.320 0.742 
18 -0.001501volume + 1.578CMR – 0.7439 0.704 

 

 In agreement with Glennon et al.,124 this study has shown with different 

compounds that the electronic character at the 3-position is important for binding 

arylguanidines to the 5-HT3 receptor. Dukat et al.100 has shown previously that electronic 

effects account for nearly 20% and that steric effects account for nearly 80% of binding 

of arylguanidines and arylbiguanides at the 5-HT3 receptor. This study is in agreement 

with Dukat and co-worker’s100 study as shown by the correlation between σ and binding 

affinity and it has been shown that the volume and complete molar refraction (CMR), 

both of which can be viewed as steric factors, provide statistically significant correlations 
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with binding affinity. In addition, the polarizability of the molecule, as shown by the 

polarizability factor and CMR, also display significant correlations. In this study the 

volume may be acting as a surrogate for the polarizability or the polarizability as a 

surrogate for the volume. One way to examine this possibility would be to synthesize and 

include in future analyses a compound with a substituent that has relatively low volume 

and relatively high polarizability (e.g., (3-cyclohexylphenyl)guanidine has a substituent 

volume of 201.3 and a polarizability of 25.46 or 2-(3-(prop-1-ynyl)phenyl)guanidine has 

a substituent volume of 154.1 and a polarizability of 20.92). 

4. Log P Analysis 

 The retention times on a nitrile reversed-phase high performance liquid 

chromatography (HPLC) column of uracil, imidazole, acetanilide, benzophenone, 

naphthalene, and diphenylamine were determined in triplicate at various concentrations 

of aqueous acetonitrile (i.e., 40%, 50%, 60%, 70% acetonitrile). From the retention times 

of the above standards relative to uracil (i.e., 0Rt t ; where Rt = retention time of the 

standard and 0t = retention time of uracil), the log of the capacity factor (i.e.,

 0 0log ' log Rk t t t    ) was determined for each of the standards. A plot of 'logk  

versus the concentration of acetonitrile was constructed (shown for benzophenone in 

Figure 18) and a linear regression analysis performed. Using the equation for each plot 

the lines for each standard could be extrapolated and the log of the capacity factor at 0% 

acetonitrile could be determined ( 'log wk ). The 'log wk  values for each of the standards 
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(i.e., imidazole, 'log wk = -0.88; acetanilide, 'log wk = 0.06; benzophenone, 'log wk = 1.18; 

naphthalene, 'log wk = 1.06; and diphenylamine, 'log wk = 1.38) were plotted against the 

literature shake-flask log P values (log P = -0.08, 1.16, 3.30, 3.18, 3.50; respectively) 

giving a standard curve for this particular column (Figure 19). A linear regression 

analysis of this data calculated an equation for the line of 'log 1.660log 1.285wP k   (r = 

0.996, F = 346.4). 

 

Figure 18. Plot of 'logk  of benzophenone versus concentration of aqueous CH3CN. 

 

The retention times of PG (27), MD-354 (2), 3-FPG (42), 3-BrPG (43), 3-IPG 

(44), 3,4,5-tri-Cl-PG (35), and mCPBG (17) were determined at various concentrations of 

aqueous acetonitrile (i.e., 55%, 65%, 75% acetonitrile). Based on the retention times 

relative to uracil, the log of the capacity factor was calculated for each of the compounds. 

The capacity  factors were  plotted against  the concentration  of acetonitrile  and a linear 
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Figure 19. Plot of literature log P values from shake-flask data144 versus 'log wk  values. 

 

regression analysis was performed (Figure 20). Based on this analysis the line from each 

plot could be extrapolated and the capacity factors at 0% acetonitrile (i.e., 'log wk ) could 

be determined (Table 11). As long as the same general range of concentration of 

acetonitrile was used the exact concentrations need not be the same with the standards 

and unknowns since the true value of interest is found based on the extrapolation to 0% 

acetonitrile—as if the compound was eluted in water only. The 'logk  value at 0% 

acetonitrile (i.e., 'log wk ) cannot actually be determined since running the HPLC column 

in pure water is ill-advised since it may destroy the column. Based on the capacity factors 

determined for 0% acetonitrile, the log P values for each of these compounds was 

calculated based on the standard curve (Table 11). 

-1.0 -0.5 0.5 1.0 1.5

-1

1

2

3

4

logk'w
lo

g
P

imidazole 

acetanilide 

           diphenylamine 
      benzophenone 
naphthalene 



www.manaraa.com

55 
 

 
 

 

Figure 20. Plot of 'logk  of various arylguanidines and mCPBG versus concentration of 
aqueous CH3CN. 
 

Table 11. Capacity factors ( 'log wk ) determined by linear regression and calculated/ 

determined log P values for the selected arylguanidines and an arylbiguanide. 

Compound 
'log wk  

Predicted 
log Pa 

Actual 
log P 

(shake-flask)b 

Actual 
log P 

(HPLC) 
27 0.1665 ± 0.0794 0.87 -1.32 1.56 
  2 0.2945 ± 0.1248 1.43 -0.64 1.77 
42 0.2375 ± 0.0681 1.03 -- 1.68 
43 0.4742 ± 0.1059 1.70 -- 2.07 
44 0.5987 ± 0.0832 2.22 -- 2.28 
35 0.9781 ± 0.0927 2.54 1.16 2.91 
17 0.2479 ± 0.1570 1.28 -0.38 1.70 

a Predicted using ChemDraw. 
b Results from a previously published study.9

 

As mentioned earlier, compounds with log P values ranging from 1.5 to 2.5 

should readily penetrate the BBB.138 Based on these results, most of these arylguanidines 

should be able to cross the BBB. The results obtained by relative retention times using 
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HPLC were consistent with the predicted log P values from ChemDraw (r = 0.957) and 

with the previous studies indicating that mCPBG (17) crosses the BBB.98,99 The study by 

Bachy et al.97 that indicated mCPBG could not cross the BBB used a different 

radioligand (i.e., [3H]granisetron versus [3H]GR65630), a larger dose (i.e., 2 and 10 

mg/kg versus 0.1-1.0 mg/kg), a longer time between injection and removal of the brains 

(i.e., 30 min versus 5 min), and a different species (i.e., mouse versus rat). Any of these 

differences may account for the difference in results between the two laboratories. 

Furthermore, given the evidence that mCPBG (17) can penetrate the BBB through ex 

vivo inhibition and radioligand binding, it would seem likely that the halogenated 

arylguanidines 2, 42, 43, and 44 should also be capable of such. This method of 

determining log P values seems to be more accurate when compared to the predicted 

values than the shake-flask method. 

5. Molecular Modeling 

Homology models were constructed by two different methods (i.e, Method A and 

Method B). In both cases the models were developed from an alignment between the N-

terminal domain of the h5-HT3A sequence and the sequence of three AChBP’s, the N-

terminal domain of a nACh receptor α1 subunit bound to α-bungarotoxin, the N-terminal 

domains of three different GABAA receptor subunits, the N-terminal domains of two 

different GABAC receptor subunits, the N-terminal domain of two different glycine 

receptor subunits, and the N-terminal domain of the mouse 5-HT3A receptor. This 

alignment was performed using ClustalX to identify conserved residues within the 
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different LGICs; specifically W90, W183, Y234, and the two cysteines forming the Cys-

loop. 

Method A. Using Sybyl’s (version 7.3) Biopolymer package, the α1 subunit of a 

nACh receptor (PDB 2qc1)42 was mutated to the sequence of the h5-HT3A receptor using 

the conserved residue alignment to identify where insertions and deletions were needed. 

This single subunit was minimized using the Amber force field and Amber charges. The 

program, SCWRL, was used to optimize side chain orientations. ProCheck was run on 

the single subunit to create a Ramachandran plot (Figure 21) to identify amino acid 

residues in most favored (red field), additionally allowed (dark yellow), generously 

allowed (lighter yellow), and disallowed (white) regions. The Ramachandran plot 

indicated that 86.8% of amino acid residues were in the most favored regions, 12.6% of 

residues were in the additionally allowed regions, and only 0.5% of residues were in the 

disallowed regions. The one amino acid shown in the disallowed region is facing into the 

pore and does not interact with the binding pocket so it has no impact on the docking. 

Using the backbone of an AChBP (PDB 1i9b)38 for orientation in space of two 

protomers, since it is a pentameric structure, a dimer of the h5-HT3A protomer was 

constructed.  
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Figure 21. Ramachadran plot of a single subunit of the h5-HT3A receptor model 
developed using Sybyl's Biopolymer package (Method A). 

 

The ligand 5-HT (1) was built in Sybyl 7.3 and given AM1-BCC charges and 

geometries from MOPAC. AM1-BCC charges are quantum mechanical charges that have 

bond correction charges (BCC) that allow for accurate charges of small molecules within 

the Amber force field. Using Gold 3.1, 5-HT was docked with 20 genetic algorithm runs 

in a 15 Å sphere around W183 to the interface between the two protomers. The proposed 
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binding mode of 5-HT (Figure 22) was consistent with the literature as the aliphatic 

amine is situated in the binding pocket in a way that it is directed towards the aromatic 

rings of W183 and Y234 and possibily capable of forming the cation-π bond as reported 

in the literature.101,145,146 

 

Figure 22. Proposed binding mode of serotonin (5-HT; 1) in the h5-HT3A receptor 
model developed using Sybyl's Biopolymer package (Method A). 5-HT (1) is in magenta 
and the side chains of residues within 5 Å of the ligand are shown. 

 

Since the proposed binding mode of 5-HT is relatively similar to that in the 

literature,101,145,146 MD-354 (2) was built and docked to the receptor model in the same 

manner as 5-HT (Figure 23). The proposed binding mode of MD-354 is similar to 5-HT 
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in that the guanidine portion of MD-354 overlaps with the aliphatic amine of 5-HT and is 

possibly interacting with W183, Y234, and Y143. 

 

Figure 23. Proposed binding mode of MD-354 (2) to the h5-HT3A receptor using 
Sybyl's Biopolymer package (Method A). MD-354 (2) is in cyan and the side chains of 
residues within 5 Å of the ligand are shown. 
 

The overlap of MD-354 (2) and 5-HT (1) is depicted in Figure 24; based on these 

proposed binding modes to this model, a new ligand was designed taking into account 

features both from 5-HT and MD-354. From the overlap of 5-HT and MD-354, it appears 

that the addition of a hydroxyl group to the aromatic ring of MD-354 in the 4-position 
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would enhance binding (Figure 24). The hydroxyl group of this designed ligand may be 

able to interact with Y153. 

  

51 

Figure 24. Overlap of 5-HT (1) and MD-354 (2) from the proposed binding modes to the 
h5-HT3A receptor developed using Sybyl's Biopolymer package (Method A) (left). The 
designed ligand N-(3-chloro-4-hydroxyphenyl)guanidine (right). 

 

Method B. The homology model constructed through Sybyl (Method A) is crude 

and rigid, so another method for developing a homology model was explored. An 

alignment of AChBP (PDB 1i9b)38, α1 nACh (2qc1)42, and h5-HT3A based on the 

conserved residue alignment was used to create ten initial pentameric models from five 

separate random seeds using the program Modeller 9.3. The program then generated ten 

loop models from each of the initial models, to create a total of 100 unique models. These 

models were given Kollman charges then minimized using NAMD, first with the 

backbone constrained then with the backbone unconstrained. Using AutoDock4, the 

ligand 5-HT (1), with the charges and geometries generated by MOPAC, was docked to 
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each of the five interfaces of each of the models with 20 genetic algorithm runs in a 40 Å 

x 40 Å x 40 Å  region  around the C-loop  (Figure 25). Based on poses consistent with the 

 

Figure 25. Proposed binding mode of 5-HT (1) in the h5-HT3A receptor agonist model 
developed using Modeller (Method B). 5-HT (1) is in magenta and the side chains of 
residues within 5 Å of the ligand are shown. 

 

literature for 5-HT145,146 and the scoring function of AutoDock, one model was identified 

as the best model for agonists. ProCheck generated a Ramachandran plot in which 67.8% 

of residues were in most favored regions, 24.1% were in additionally allowed regions, 
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4.5% were in generously allowed regions, and 3.6% were in disallowed regions (Figure 

26). Since multiple loop models were made by slight energy adjustments, the side chain 

conformations were not optimized using SCWRL; thus, there are more residues in the 

generously allowed and disallowed regions than with the model developed with Sybyl’s 

Biopolymer package (i.e., Method A). 

 

Figure 26. Ramachadran plot of the h5-HT3A receptor agonist model developed using 
Modeller (Method B). 
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Serotonin’s indole ring is perpendicular to W90 and the aliphatic amine is situated 

between Y234 and W183 forming a possible cation-π bond. This pose is consistent with 

poses proposed by Reeves et al.146 The indole amine is in close proximity to the hydroxyl 

group of Y153 and may form a H-bond.  

Since this model was validated by docking 5-HT, MD-354 (2) was built and 

docked in the same manner as 5-HT. In the model, MD-354 docks in a manner in which 

the aromatic rings of 5-HT and MD-354 are in the same region of the binding pocket as 

are the aliphatic amine of 5-HT and the guanidine of MD-354 (Figure 27). The guanidine 

portion of MD-354 presumably forms a cation-π bond with W183 and Y234. The 

aromatic ring portion of MD-354 also may form a π-π interaction with Y153. However, 

the designed ligand (i.e., 51) from the model developed using Method A (Figure 24) is no 

longer valid. The overlap using the model developed using Method B indicates a slightly 

different overlap of MD-354 and 5-HT. In the model developed using Method B, the 

overlap is such that the –OH group from 5-HT overlaps with the open meta-position of 

MD-354. 

The newly synthesized halogen analogs were built and docked to this model 

following the same parameters. MD-354 (2), 3-BrPG (43), 3-IPG (44) overlapped very 

well; however, the aromatic ring and guanidine portion of 3-FPG (42) overlapped with 

the other halogenated analogs but the fluoro substituent was situated on the opposite side 

of the ring (Figure 28). This slight change may explain why 42 binds with decreased 
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affinity relative to MD-354, 3-BrPG, and 3-IPG. In fact, 3-FPG binds more closely to 5-

HT, and both have lower binding affinities than MD-354, 3-BrPG, and 3-IPG.  

 

Figure 27. Proposed binding mode of MD-354 (2) to the h5-HT3A receptor agonist 
model developed using Modeller (Method B). MD-354 is shown in cyan and the side 
chains of residues within 5 Å of the ligand are shown. 
 

The fluoro substituent affects the aromatic ring system more than the other 

halogen substituents. It is very electronegative and has orbitals similar in size to those of  
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Figure 28. Proposed binding mode of MD-354 (cyan), 3-FPG (red), 3-BrPG (blue), 3-
IPG (yellow) to the h5-HT3A receptor agonist model developed using Modeller (Method 
B). 
 

carbon.147 These two factors make the C—F bond the most energetic bond in which 

carbon can participate.147 Because of the difference in electronegativity, the dipole 

moment that is created may contribute to the compound’s ability to engage in 

intermolecular interactions since the physical properties and chemical reactivities are 

greatly affected. In addition, it has been shown through X-ray crystal structure data that 
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the fluoro group is actually closer in size sterically to an oxygen atom than a hydrogen 

atom.148 The 3-OH substituted phenylguanidine (41; Ki = 2020 nM)100 has been shown to 

have binding affinity slightly lower than 3-FPG (42; Ki = 1420 nM). Based on these data, 

the size of the substituent needs to be larger than a –F group or a –OH group to bind well 

to the 5-HT3 receptors. Overall, the 3-sustituted analogs analyzed earlier also follow this 

trend (Table 8). 

Very recent mutagenesis studies have suggested that E129 is involved in the 

hydrogen-bond with the –OH in 5-HT.149 In the models created here E129 does not face 

into the binding pocket. This does not mean that the model is incorrect; however, it is just 

a model. Mutagenesis of E129 to A, D, G, H, N, K, or Q either decreased the pEC50 value 

or there was no response. This may have also been because the mutations are not 

allowing the receptor binding pocket to form correctly. The model generated using 

Modeller (i.e., Method B) is a more reliable model than the model generated using Sybyl 

(i.e., Method A) because it has allowed for flexibility in not only building the receptor 

model but also in the docking algorithms. The rigidity of the model generated using 

Sybyl (i.e., Method A) does not allow the ligands to dock to the receptor as closely as 

those proposed in the literature. 

6. Designed Ligand 

The ligand designed on the basis of the Method A modeling studies (e.g., see 

Figure 22), N-(3-chloro-4-hydroxyphenyl)guanidine (51) (Figure 24), was synthesized by 
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the method outlined in Scheme 2. The target compound is a known compound.150 The 

nitro intermediate (53) was obtained by sonnication of 2-chlorophenol (52) with nitric 

acid (9% aqueous).151 The nitro group was then reduced using sodium hydrosulfite and 

aqueous sodium hydroxide.152 An ethanolic solution of the HCl salt of aniline 54 was 

heated at reflux with cyanamide (50% aqueous) to give 51.150 The structure was 

confirmed by IR, 1H NMR, and melting point. 

Scheme 2.a 

 

      52          53  54     51 

a Reagents and conditions: a. HNO3, 1,2-dichloroethane, sonnication; b. Na2S2O4, NaOH, 
H2O, reflux; c. HCl, EtOAc; d. NH2CN, EtOH, reflux.  

 

B. Conformationally-Constrained Analogs 

1. Synthesis of 2-Amino-7-chloro-3,4-dihydroquinazoline (46) 

 The synthesis of 2-amino-7-chloro-3,4-dihydroquinazoline (46) was performed as 

described in Scheme 3. This was a novel compound at the time of its synthesis, and its 

method of preparation followed a literature procedure for the synthesis of 2-(alkylamino)-

5,6- and 6,7-dihydroxy-3,4-dihydroquinazolines.153 S-Methylisothiourea sulfate, sodium 
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carbonate, and 4-chloroisotoic anhydride (55) were heated at reflux in 80% aqueous 

acetonitrile. After cooling the reaction mixture to room temperature, 2-amino-7-

chloroquinazolin-4-(3H)-one (56) precipitated from the solution and was collected by 

filtration. This intermediate (i.e., 56) was reduced using borane in tetrahydrofuran and the 

HCl salt 46 was prepared. The structural assignment is consistent with IR, 1H NMR, and 

elemental analysis. 

Scheme 3.a 

 

   55            56         46 

a Reagents and conditions: a. S-methylisothiourea sulfate, Na2CO3, CH3CN (80%), 
reflux; b. BH3-THF, reflux, c. HCl 

 

2. Synthesis of 2-Amino-6-chloro-3,4-dihydroquinazoline (47) 

 2-Amino-6-chloro-3,4-dihydroquinazoline (47) was re-synthesized for this study 

by the route outlined in Scheme 3 except that 5-chloroisotoic anhydride (57) was used in 

place of 4-chloroisotoic anhydride (55). It was found that the product yield was much 

higher (84% versus 19%) and the reaction time much shorter (6 h versus 20 h) using 

aqueous acetonitrile (80%) rather than 1,4-dioxane, which was used previously for the 

OHN NHN NHN
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synthesis of 2-amino-6-chloroquinazolin-4-(3H)-one (58).132 The physicochemical and 

spectral character of 47 was consistent with an authentic sample prepared earlier in this 

laboratory.132 A comparison of 46 and 47 on TLC showed little differences in Rf values 

regardless of eluant system (i.e., H2O, CH3OH, CH2Cl2:CH3OH:NH4OH 9:1:0.1). 

3. Binding Studies 

 The new quinazoline analog 46 was evaluated, and the quinazoline analog 47 was 

re-evaluated for binding at the mouse 5-HT3A receptor. Compound 47 was found to bind 

with the highest affinity out of the three quinazoline analogs (Table 12). This is 

interesting since it would be the equivalent of 4-chlorophenylguanidine (29; Ki = 320 

nM) and thus indicating that  neither meta-position  is important  for binding at the 5-HT3  

Table 12. Binding affinity of quinazoline series at 5-HT3 receptors. 

 

Compound 
-Cl 

position

Ki nMa

NG108-15
GR65630

Ki nMb

HEK293
Granisetron

Ki nM (SEM)c

NIH3T3
LY 278,584

48 5 1148 1325 (257)
47 6 34 123 80   (11)
46 7 1975 (168)

aNG108-15 mouse/rat recombinant receptors express 5-HT3A; Previously 
reported by Rahman et al.9 
bHEK293 human native receptors express 5-HT3AB; Dr. M. White (personal 
communication). 
cNIH3T3 mouse recombinant receptors express 5-HT3A; Ki values were 
generously provided by the National Institute of Mental Health's Psychoactive 
Drug Screening Program, Contract # NO1MH32004 (NIMH PDSP)154 
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receptor. But, since it has been shown that one of the meta-positions is important for the 

binding of arylguanidines (see previous section on halogen analogs), these constrained 

analogs might not bind in the same manner as MD-354 (2). The three sets of binding data 

presented in Table 12 were obtained from three different laboratories. The discrepancies 

in the binding data may be contributed to the different types of cells used (i.e., NG105-

15, HEK293, NIH3T3) and thus variations in the population type of 5-HT3 receptors (i.e., 

homomeric mouse 5-HT3A or heteromeric human 5-HT3AB). Or it may be the result of 

the radioligand used (i.e., GR65630, granisetron, and LY 278,584). 

 Analogs 47 and 48 were submitted for functional assay and were identified as 

antagonists for 5-HT3 receptors using whole cell patch-clamp experiments. MD-354 (2), 

47, and 48 were investigated using this functional assay. MD-354 was found to be an 

agonist in this assay with an EC50 value of 3.24 (± 0.55) μM. Quinazolines 47 and 48 

were found to be antagonists with IC50 values of 4.39 (± 0.78) and 16.53 (± 5.18) μM, 

respectively (Dr. M. Schulte, personal communication, unpublished data). This functional 

data indicates that this quinazoline series is a novel class of 5-HT3 receptor antagonists. 

4. Log P Analysis 

 An analysis of the log P values for the quinazoline series of compounds was 

conducted in the same manner as with the arylguanidine series (Figure 29). Because these 

are positional isomers, it might be expected that their log P values would be very similar. 

The predicted log P value for each is 1.79 (Table 13). Constraining the guanidine by 
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introducing a methylene bridge between the terminal amine and the aromatic ring makes 

the compound more lipophilic than MD-354 (2; predicted log P = 1.43; Table 11) so that 

it should more readily cross the BBB. The actual log P values as determined using HPLC 

for the three quinazolines are nearly identical; 46 had a log P value of 1.933, 47 has a log 

P value of 1.859, and 48 had a log P value of 1.889 (Table 13). 

Table 13. Capacity factors ( 'log wk ) determined by linear regression and calculated/ 

determined log P values for the quinazolines. 

Compound Position 
of Cl 

'log wk  Predicted
log Pa 

log P 
(HPLC) 

48 5 0.4388 ± 0.01562 1.79 1.89 
47 6 0.4175 ± 0.00654 1.79 1.86 
46 7 0.4712 ± 0.03175 1.79 1.93 

a Predicted using ChemDraw. 
 

 

Figure 29. Linear regression analysis from the 'logk  values of 46, 47, 48 at various 
concentrations of acetonitrile for the quinzaoline analogs. 
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The log P values determined for the quinazoline analogs (i.e., approximately 1.9) 

fall within the range of log P values that are expected to cross the BBB (i.e., 1.5-2.5). 

Since they should be able to cross the BBB they should be able to act at centrally-located 

5-HT3 receptors. 

5. Behavioral Studies 

a. Tail Suspension Test 

 The partial agonist MD-354 (2) and quinazoline analogs 46-48 were tested for 

antidepressant activity using the mouse tail suspension assay (n = 8-11 mice/dose). 

Tricyclic antidepressants (i.e., desipramine and imipramine; 20 mg/kg), an SSRI (i.e., 

fluoxetine; 20 mg/kg), and a 5-HT3 receptor antagonist (i.e., ondansetron; 0.1 µg/kg) 

were given by ip injection thirty minutes before the test and were used as controls. The 

doses of the controls (i.e., TCAs, SSRI, and ondansetron) and the length of the test were 

chosen based on literature studies.15,155 The tests were video recorded and the immobility 

times for each mouse were measured in triplicate. A one-way analysis of variance 

(ANOVA) showed that all of the standards displayed statistically lower immobility times 

when compared with saline (Figure 30). The strain of mice used in this study was the ICR 

strain; this strain has not typically been used in literature studies since ICR mice tend to 

be more active than other strains. In fact, van der Hayden et al.156 and Nomura et al.157 

have shown imipramine to be inactive in ICR mice (i.e., 3, 10, 30 mg/kg and 10 mg/kg, 
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respectively). Both studies used automated devices to determine immobility rather than 

manual observation that was used in the present study. 

 

Figure 30. Effect (± SEM) of standards (ip) on duration of immbolity in the mouse tail 
suspension test (n = 8-11 mice/treatment). The significance of the effect was evaluated 
with a one-way ANOVA test (F4,41 = 3.256, p < 0.05), Newman-Keuls post-hoc test (p < 
0.05). 

 

 The quinazoline analogs (i.e., 46 and 47) as HCl salts and MD-354 as a nitrate 

salt, were injected ip thirty minutes before the test at doses ranging from 0.1 to 30 mg/kg. 

The quinazoline analog (i.e., 48) as HBr salt was injected ip thirty minutes before the test 

at doses ranging from 0.1 to 10 mg/kg. The 6-Cl and 7-Cl analogs (i.e., 47 and 46, 

respectively) exhibited statistically lowered immobility times when compared to saline 

(Figure 31). Using a one-way ANOVA the 6-Cl analog (i.e., 47; Ki = 80 nM) exhibited 

statistically significant lowered immobility times at the 1.0 and 3.0 mg/kg doses (F6,58 = 

3.232, p < 0.01; Dunnett’s post-hoc test p < 0.01, p < 0.05, respectively). Using a one-
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way ANOVA the 7-Cl analog (i.e., 46; Ki = 1975 nM) exhibited statistically significant 

lowered immobility times at the 0.1, 0.3, and 1.0 mg/kg doses (F6,63 = 5.036, p < 0.01; 

Dunnett’s post-hoc test p < 0.05, 0.1 and 0.3 mg/kg doses; p < 0.01, 1.0 mg/kg dose). The 

 

7-Chloroquinazoline (46) 6-Chloroquinazoline (47) 

  

5-Chloroquinazoline (48) MD-354 (2) 

  

Figure 31. Effect (± SEM) of 46 (top left), 47 (top right), 48 (bottom left), and 2 (bottom 
right) (ip) on duration of immobility in the mouse tail suspension test (n = 8-10 
mice/treatment). The significance of the effects were evaluated using one-way ANOVA 
tests. For 46 (F6,63 = 5.036, p < 0.01), Dunnett’s post-hoc test (** p < 0.01, * p < 0.05). 
For 47 (F6,58 = 3.232, p < 0.01), Dunnett’s post-hoc test (** p < 0.01, * p < 0.05). 
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5-Cl analog (i.e., 48; Ki = 1148 nM) did not exhibit significantly lowered immobility time 

for any of the doses examined (Figure 31). MD-354 (2; Ki = 166 nM) exhibited reduced 

immobility times which were not significantly different than saline (Figure 31). MD-354 

and 48 produce a saline-like effect in the mouse tail suspension test. The log P values 

determined for all four of these compounds suggest that they can easily cross the BBB. 

The decreased immobility time is the result of these compounds acting at a central 

receptor. Since these compounds were given by ip injection (i.e., injection into the body 

cavity) and some doses display a significant effect it can be assumed that they are 

crossing the BBB and acting at a centrally located receptor as the log P data suggested 

from the HPLC analysis. 

 As shown in Figure 31, 6-chloroquinazoline 47 seems to behave as antidepressant 

at 1.0 and 3.0 mg/kg doses. But the immobility time, while still reduced, is higher at 

doses greater than 3.0 mg/kg and less than 1.0 mg/kg resulting in a U-shaped dose-

response curve. This curve can also been seen with the 7-chloroquinazoline analog (46) 

and MD-354 (2) but it is not as pronounced. The U-shape dose-response curve is 

characteristic for 5-HT3 receptor ligands in biological assays.5 With regards to agonists, 

this type of dose-response curve can be explained by desensitization of the receptor. 

However, with regards to antagonists the underlying mechanism has yet to be explained. 

One possible explanation is that 5-HT3 receptor antagonists may bind differently at the 

homomeric 5-HT3A receptors and heteromeric 5-HT3AB receptors.5,158  
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The 7-Cl analog (46) does not bind with high affinity (Ki = 1975 nM) to 5-HT3 

receptors but displays lower immobility scores than saline; this may indicate that it acts 

via a non-5-HT3 receptor mechanism to produce this effect. During the course of this 

investigation Peters et al.159,160 reported the synthesis of a number of cyclic guanidines, 

including 46-48, through high throughput screening methods. They showed that some 

bind both to 5-ht5a and 5-HT7 receptors (Table 14). Peters et al. report prompted us to test 

our analogs for binding affinity at 5-ht5a and 5-HT7 receptors. We have found that the 7-

Cl analog binds at 5-ht5a and the 5-HT7 receptors (Ki = 302 and 310 nM, respectively)154 

with 5-fold higher affinity than at 5-HT3 receptors. Interestingly, the 5-HT7 receptor has  

 

Table 14. Binding profile of selected cyclic guanidines at 5-HT3, 5-ht5a, and 5-HT7 
receptors.  

Compound R 5-HT3 5-ht5a 5-HT7 
48 5-Cl 1325 ± 257 1051b 155a   99b 1109a 793b

47 6-Cl      80  ±   11a — 357 ± 38a 807b 1701 ± 242a — 
46 7-Cl  1975 ± 168a — 302 ± 48a 347b   310 ±   43a — 

aKi values were generously provided by the National Institute of Mental Health's Psychoactive Drug 
Screening Program, Contract # NO1MH32004 (NIMH PDSP)154 
bPeters et al.159 
 

been implicated in depression.161 A recent review by Mnie-Filali et al. showed that 5-HT7 

receptor KO mice display antidepressant-like behavior in the FST and TST relative to 
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WT mice.161 In addition, the administration of the 5-HT7 receptor antagonist SB-269970 

also decreased immobility time.161 Therefore, the 5-HT7 receptor mechanism in the 

antidepressant action of 46 cannot be excluded. The 5-ht5a receptor’s function is not fully 

understood because of the lack of selective agents. However, since it is located only in 

the CNS, primarily in the cerebral cortex, hippocampus, and cerebellum, it has been 

postulated that this receptor may be involved in schizophrenia or mood disorders.162,163 

Based on this information 47 could be exhibiting its antidepressant effect through a 5-ht5a 

or 5-HT7 receptor mechanism. Interestingly, the 5-chloroquinazoline 48 seems to be more 

selective for the 5-ht5a receptor over the 5-HT3 and 5-HT7 receptors. Optimization of this 

analog by Peters et al. has led to even more analogs that have increased binding affinity 

for 5-ht5a receptors (e.g., 2-amino-5-chloro-4-methyl-3,4-dihydroquinazoline; 5-ht5a Ki = 

5.1 nM).159,160 The 5-Cl-4-CH3 analog was also shown to be a competitive 5-ht5a receptor 

antagonist through the [35S]GTPγS assay with a pA2 value of 8.52.159 Most of their 

analogs had no more than a 4-fold selectivity over the 5-HT7 receptors but because of the 

similar localization of the 5-ht5a and 5-HT7 receptors in the brain, Peters et al. continued 

to examine this series.159 Their overall goal was to develop a pharmacological tool for 

behavioral studies to examine the role of the 5-ht5a receptor’s antipsychotic-like 

effects.160 Although the involvement of a 5-HT7 receptor mechanism in the antidepressant 

activity of 46 cannot be excluded at this time, it is unlikely to undermine the 

antidepressant activity of these quinazoline analogs because 47 binds with more than 20-

fold lower affinity at 5-HT7 receptors versus 5-HT3 receptors. 
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b. Locomotor Activity Assay 

 Since hypermobility may also explain lowered immobility times relative to saline, 

the effective tail suspension test doses (46, 0.3 mg/kg; 47, 1.0 and 3.0 mg/kg) were tested 

against saline for hyperactivity using the locomotor activity assay. The doses were 

injected ip with no pre-treatment time and their effect on locomotor activity was 

examined over 45 minutes. This time encompasses the 30 minutes pretreatment from the 

tail suspension test, the six minute tail suspension test, and nine minutes after the tail 

suspension test would be over; so any movements that have increased relative to saline 

during this time would have been increased during the antidepressant assay. 

Using a one-way ANOVA there was no significant difference between any of the 

doses and saline for the 45 minute duration for total movement episodes, total movement 

time, total movement distance, number of jumps or average velocity (Figure 32). These 

parameters are usually used in the identification of stimulants. Stimulants generally 

increase the movement time, distance, and velocity but decrease the number of movement 

episodes (i.e., the drug increases the duration of motor activity but decreases the number 

of stops).164 There was also no difference from saline for the retraced local movements, 

retraced  local movement episodes  (3 repeated local movements),  and these movements’  
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Figure 32. Effect (± SEM) of 47 (1.0 and 3.0 mg/kg) and 46 (0.3 mg/kg) on total number 
of movement episodes, total movement time, total movement distance, total number of 
jumps, and average velocity (n = 12-13 mice/treatment). 
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time which may indicate exploratory behavior (Figure 33). The term local refers to the 

fact that the animal’s movement does not produce a large enough change in location from 

its starting point (i.e., less than ±1.499 beam spaces from the starting point). As with all 

of the other parameters examined there was no difference using a one-way ANOVA 

between the doses evaluated and saline for margin distance traveled, time spent in the 

margin, center distance traveled, time spent in the center, number of center entries, and 

the number of vertical entries (Figure 34). Increased margin activity or decreased central 

activity is generally viewed as an anxiogenic-like effect. Vertical entries may indicate the 

“nonspecific excitability level” of the animal. 

 The 5-HT3 receptor antagonist ondansetron (3) and the 5-HT3 receptor partial 

agonist MD-354 (2) showed no effect on locomotor activity in previous studies.15,132 

Based on those results, there was no reason to expect a change in locomotor activity for 

the quinazoline analogs 46 and 47 unless these compounds cause hyperactivity. Since 

there was no difference in activity from saline using a one-way ANOVA with any of the 

doses examined, the lowered immobility scores from the tail suspension test should be 

from an antidepressant-like action of the compounds and not from hyperactivity. 

However, 46 displayed a decreased number of center entries, a decreased amount of time 

spent  in  the center of the arena,  and  a  decreased distance  traveled  in  the center of the 
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Figure 33. Effect (± SEM) of 47 (1.0 and 3.0 mg/kg) and 46 (0.3 mg/kg) on total number 
of retraced local movements, total number of retraced local movement episodes, and total 
time spent on retraced local movements (n = 12-13 mice/treatment). 

 

arena, but they were not found to be significantly different from saline using a one-way 

ANOVA. A significant decrease in center activities may have indicated anxiogenic-like 

properties. Because these parameters were not significantly different than saline using a 

one-way ANOVA, this may be because of variation and not a true example of anxiogenic 

properties.  If  it  is  because of  anxiogenic properties,  it is most likely the result of acute  
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Figure 34. Effect (± SEM) of 47 (1.0 and 3.0 mg/kg) and 46 (0.3 mg/kg) on total 
distance traveled in the margin, total time spent in the margin, total distance traveled in 
the center, total time spent in the center, the number of center entries, and the number of 
vertical entries (n = 12-13 mice/treatment). 
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administration; there have been reports indicating that some antidepressants increase 

anxiety levels when administered acutely.165,166 

6. Molecular Modeling 

 Since the constrained analogs 47 and 48 were found to be antagonists for the 5-

HT3 receptor, it would be of value to identify the docking poses of these constrained 

analogs to a 5-HT3 receptor homology model. Using the same set of models generated 

using Modeller (Method B) and AutoDock4, the 5-HT3 receptor anatagonist granisetron 

(4), with the charges and geometries generated by MOPAC, was docked to each of the 

five interfaces of each of the 100 models with 20 genetic algorithms in a 40 Å x 40 Å x 

40 Å region around the C-loop. A different model than the model identified by the 

agonist 5-HT, was identified through the proposed binding mode of the antagonist 

granisetron. This proposed binding mode is similar to that in the literature for granisetron 

(Figure 35).167,168 The azabicyclic ring is located towards W90 and F226, while the 

aromatic ring is located towards W183 and Y234. ProCheck was used to create a 

Ramachadran plot of the pentamer; it was found that 64.8% of residues were in favored 

regions, 28% in additionally allowed regions, 4.8% in generously allowed regions and 

2.5% in disallowed regions (Figure 36). Since the loop models are generated by small 

changes in energies, the side chains were not optimized with SCRWL leading to residues 

found in the generously allowed and disallowed regions as seen with the 5-HT3 receptor 

agonist model also developed by Modeller. In addition, AutoDock allowed for flexibility 
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in the backbone atoms during the docking process to allow for the best possible 

interactions. 

 

 

Figure 35. Proposed binding mode of granisetron (4) to the h5-HT3A receptor antagonist 
model developed using Modeller (Method B). Granisetron is shown in magenta and 
residues within 5 Å are shown. 

 

Since this antagonist model could be validated by granisetron (4), the quinazoline 

analogs 46-48 and the 5-HT3 receptor partial agonist MD-354 (2) were built and given 

geometries and charges according to MOPAC. They were docked to the antagonist 

validated receptor model using AutoDock and the same parameters as before. The 
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guanidine portion of the quinazolines is oriented towards W90 instead of towards W183 

as seen with the MD-354 (Figure 37). An overlap of MD-354 (2) and the highest binding 

affinity analog, 6-Cl quinazoline 47, is shown in Figure 38. 

 

 

Figure 36. Ramachadran plot of the h5-HT3A receptor antagonist model developed using 
Modeller (Method B). 

 



www.manaraa.com

87 
 

 
 

 

Figure 37. Proposed binding mode of the quinazoline analogs 46-48 to the h5-HT3A 
receptor anatagonist model developed using Modeller (Method B). The 5-Cl analog (48) 
is shown in cyan, the 7-Cl analog (46) is shown in yellow, and the 6-Cl analog (47) is 
shown in purple. Residues within 5 Å are also shown. 

 

Based on the structures of the quinazolines and MD-354, it was assumed that the 

quinazolines should be able to bind overlapping MD-354. However, based on the 

proposed binding modes, the quinazoline analogs do not bind in the same manner as the 

partial  agonist  MD-354.  But bind in the opposite direction as MD-354 (Figure 38).  The  
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Figure 38. Overlap of the proposed binding modes of MD-354 (2; cyan) and the highest 
binding affinity analog, 6-Cl quinazoline 47 (purple). 

 

guanidine of the quinazolines may be interacting with W90 instead of W183 as seen with 

the proposed binding mode of MD-354. These changes in proposed binding modes may 

explain why the quinazolines are antagonists and MD-354 is merely a partial agonist. The 

constrained guanidine cannot make the same interactions (W183 and Y234) with its 

nitrogen atoms as the free guanidine of MD-354. This may also explain why neither of 

the two rotameric constrained analogs of MD-354 (i.e., 46 and 48) bind with the same 

affinity as MD-354. 

7. Synthesis of 2-Amino-8-chloro-1,3-benzodiazepine (49) 

 The synthesis of this constrained analog of MD-354 (2) would allow for a longer 

centroid-to-amine distance, closer to that of MD-354, and a larger height of the primary 

amine above the plane of the aromatic ring (Table 6). The first attempted synthesis 

followed the reaction outlined in Scheme 4. The benzoic acid 59 was reduced to the 

benzyl alcohol 60.169 An attempt was made to convert the benzyl alcohol to the benzyl 
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bromide 61.170 However, the benzyl bromide was unable to be isolated and characterized 

with and without first protecting the amine (i.e., (Boc)2O or trifluoroacetic anhydride). 

Scheme 4.a 

 

  R = H, Boc, TFA 

aReagents and conditions: a. LiAlH4, THF (R = H); b. PBr3, CH2Cl2 or Et2O; c. NaCN, 
isopropanol, H2O, d. Raney Ni, e. BrCN, EtOH 

 

 The second route of synthesis involved the opening of the oxindole ring 64 to 

obtain the carboxylic acid 65.171 Under the conditions described in Scheme 5 the desired 

ring-opened intermediate was not isolated. Either it was formed, and then recyclized to 

the starting material (i.e., 64), as the use of acid is typically employed to prepare 

oxindoles from the 2-aminophenylacetic acids,172 or only tautomer 66 of the starting 

material was formed which then reverts back to starting material. The NMR and IR 

59      60        61 

49   63           62 
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analysis of the product from the reaction could not conclusively be identified as either 65 

or 66 but was different from 64 on TLC. 

Scheme 5.a 

 

aReagents and conditions: a. NaOH, H2O, reflux; b. HCl, H2O; c. carbonyldiimidazole, 
NH3, CH3OH, d. BH3-THF, e. BrCN, EtOH 

 

 The third route of synthesis involved the conversion of nitrotoluene 68 to 

benzaldehyde 69 with DMF-DMA,173 then converting the benzaldehyde to a nitrostyrene 

70 with nitromethane174 as outlined in Scheme 6. The benzaldehyde 69 could not be 

purified from bi-products formed during the reaction. 

 

 

 

64       65             67 

66       49   63 
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Scheme 6.a 

 

aReagents and conditions: a. 1. DMF-DMA, 140 °C, 2. NaIO4; b. CH3NO2, NH4OAc, 
reflux, c. SnCl2, HCl, d. BrCN, EtOH 

 

The fourth route of synthesis attempted to convert benzoic acid 71 to 

nitrophenylethanone 73 going through intermediate 72 as outlined in Scheme 7.175 

However, only the intermediate 72 was formed and isolated; the nitrophenylethanone 73 

was not. It appears that the intermediate does not react as easily with the nitromethane as 

suggested in the literature. 

The fifth route of synthesis involved the reaction of nitrotoluene 68 with N-

bromosuccinamide and benzoyl peroxide to form benzyl bromide 75 (Scheme 8).176 The 

benzyl bromide was slightly more polar than the starting material and has a very similar 

melting point making separation difficult. An attempt to convert benzyl bromide 75 to 

(nitrophenyl)acetonitrile 76 using hydrogen cyanide formed in situ from sodium cyanide  

 

68  69           70

49   63 
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Scheme 7.a 

  

aReagents and conditions: a. carbonyldiimidazole, K2CO3, THF, CH3NO2, reflux; b. BH3-
THF; c. SnCl2, HCl; d. BrCN, EtOH 

 

and strong acid resulted in the formation of a dimer complex (i.e., 77). This type of 

dimerization was seen by Kalir and Mualem with the reaction of 2-nitrobenzylbromide 

using this reaction.177 Another attempt to convert the benzyl bromide 75 to 

(nitrophenyl)acetonitrile 76 was made using liquid-liquid phase transfer catalysis. 

Sodium cyanide ionizes in water into a sodium ion and cyanide ion. The cyanide reacts 

with 75 to form 76, and then quickly reacts with another equivalent of 75 to form 2,3-

bis(4-chloro-2-nitrophenyl)propanenitrile (77). Adjusting the pH to be acidic to increase 

the ionization of the cyanide completely halted the reaction. Using solid-liquid phase 

transfer catalysis with potassium cyanide, 18-crown-6 ether, in acetonitrile still produced 

77 and not 76 as desired. 

71   72       73 

49           63      74 
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Scheme 8.a 

 

Reagents and conditions: a. N-bromosuccinamide, benzoyl peroxide, CCl4, light, reflux; 
b. NaCN, H2O, TBAB, CH2Cl2; c. BH3-(CH3)2S, reflux; d. Raney Ni; e. BrCN, EtOH, 
reflux 
 

Given that the height of the amine above the plane and the aromatic centroid to 

primary amine distances of 49 are closer to that of MD-354 (2) relative to the other 

constrained analogs (i.e., 45-48), 49 may bind with enhanced affinity. Since the synthesis 

of 49 was unsuccessful, binding data is not available. If 49 binds with higher affinity than 

46, the longer amine to centroid distance and/or the out-of-plane character of 49 might 

explain the difference in binding affinities. 

 

68           75    76 

77     49     63 
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V. Conclusions 

Two novel series of MD-354 (2) analogs were synthesized as part of this 

investigation. The intended purpose of evaluating these series was to identify what 

characteristics of the meta-position are necessary for binding to the 5-HT3 receptor and 

which meta-position is important for binding. 

The first series of analogs developed was the mono-substituted halogen analogs of 

MD-354. By purely examining the binding affinity of PG (27), 3-FPG (42), MD-354 (2), 

3-BrPG (43), and 3-IPG (44) it appears that smaller substituents do not bind very well at 

the 5-HT3 receptors. The receptor may need a substituent at the 3-position of a particular 

size or larger to have high affinity; the –H or –F groups may be too small to fit this 

requirement. However, the 3-CF3 analog binds with even lower affinity than PG or 3-

FPG and is much larger in terms of solvent accessible volume than any of the 

halogenated analogs, suggesting that something more than just size plays a role in 

binding affinity. A Hansch analysis indicated that size in the form of volume (i.e., surface 

accessible volume and CMR), polarizability (i.e., CMR and polarizability) and electronic 

character (i.e., π) are important components in binding affinity. However, volume and 

polarizability are intercorrelated and can therefore act as surrogates for each other. But a 

multiple linear regression analysis has shown that π and either CMR, volume, or 

polarizability impact binding affinity. All of this information is consistent with a prior 
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QSAR analysis100,124 of arylguanidines and supports the current pharmacophore for 

arylguanidines and arylbiguanides83 that at one of the meta-positions an electron-

withdrawing group of a certain volume or polarizability is needed for optimal binding 

affinity. 

Two distinct homology models of the h5-HT3A receptor were developed by 

different methods (i.e., Method A and Method B) and validated by docking the 5-HT3 

receptor agonist serotonin. Upon validation of the models, the docking of the halogenated 

analogs to a homology model (Method B) of the h5-HT3A receptor was investigated. The 

results suggested that these analogs bind in the same manner as MD-354. However, 3-

FPG (42) is suggested to dock in an orientation in which the fluorine atom does not 

overlap with the other halogens but is on the opposite side of the aromatic ring. This can 

be explained by the effects of a fluorine atom attached to an aromatic ring. The 

electronegativity of the fluorine atom might affect the electronic character of not only the 

ring but also of the guanidine. 

Based on the proposed docking poses of MD-354 and serotonin (Method A) a 

new analog was designed and synthesized, (3-chloro-4-hydroxyphenyl)guanidine (51). 

The guanidine portion should be able to interact with W183 and Y234 as the aliphatic 

amine in serotonin does and the hydroxyl group should be able to interact with Y153. The 

–Cl group from this compound should be able to sit in the same pocket as the –Cl group 

from MD-354. In theory 51 should bind with higher affinity than 5-HT or MD-354 

because it should be able to interact with the receptor similar to both 5-HT and MD-354. 
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The second series of analogs developed were constrained analogs of MD-354 (2); 

in which the guanidine was constrained by a methylene group to form a series of 

quinazolines (i.e., 46-48). This series was initially developed to determine which meta-

position was important for binding affinity. However, binding data at the 5-HT3 receptor 

of these three analogs indicated that neither position was important. Since it has been 

shown previously that there is an electronic effect for a meta-substituent (vide supra), at 

least one meta-position is important and necessary for binding to the 5-HT3 receptor if the 

compounds are binding in the same manner. Based on this data, the quinazoline series 

does not seem to be binding to the 5-HT3 receptor in the same manner as the 

arylguanidines. A functional assay has also shown that some of these quinazolines are 

antagonists for the 5-HT3 receptor (47; IC50 = 4.39 ± 0.78 μM and 48; IC50 = 16.53 ± 5.18 

μM; Dr. M. Schulte, personal communication, unpublished data). 

Molecular modeling of the possible binding modes of the quinazolines to a 

homology model (Method B) of the h5-HT3A receptor validated by the docking of the 5-

HT3 receptor antagonist granisetron, indicates that the quinazolines do not bind in the 

same manner as MD-354. The quinazolines seem to bind upside-down relative to MD-

354 in which their guanidine portion interacts with W90 and not W183. Since this series 

has been shown to be functionally different than MD-354 and does not seem to bind in 

the same manner, it should be considered a novel class of 5-HT3 receptor ligands. 

Some of the newly synthesized analogs (e.g., 43, 44, and 47) have higher binding 

affinity for the 5-HT3 receptors than MD-354. But, having higher binding affinity had no 
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effect on the ability of the compound to cross the BBB. The evidence for mCPBG (17) to 

penetrate the BBB has been controversial. A newer method of determining partition 

coefficients was employed using HPLC. With this method, mCPBG was shown to have a 

log P value consistent with its being able to cross the BBB. The log P values determined 

for PG (27), 3-FPG (42), MD-354 (2), 3-BrPG (43), 3-IPG (44), 3,4,5-tri-Cl-PG (35), 5-

Cl quinazoline 48, 6-Cl quinazoline 47, and 7-Cl quinazoline 46 also indicate that they 

should be able to readily cross the BBB. 

Considering the log P values of the quinazoline series indicates that these 

compounds should be able to readily cross the BBB and interact with central 5-HT3 

receptors and, considering that this is a novel series of 5-HT3 receptor ligands, their 

ability to treat depression was evaluated with the mouse tail suspension test. Results from 

the study indicated that some of the doses of two of the quinazolines (1.0 and 3.0 mg/kg 

of 47 and 0.1, 0.3, and 1.0 mg/kg of 46) decrease immobility time relative to saline. 

Whereas, the other quinazoline analog (i.e., 48) and MD-354 (2) did not statistically 

decrease immobility time. Furthermore, the lowered immobility scores are not because of 

increased movements of the mice as shown by saline-like effects on the locomotor 

parameters assessed. However, the lack of selectivity for the 5-HT3 receptor may indicate 

that the antidepressive action seen may or may not be because of a 5-HT3 receptor 

mechanism. If the antidepressive action that is observed is not because of a 5-HT3 

receptor mechanism, then these compounds being antagonists is not relevant. But, if the 

antidepressive action that is observed is because of a 5-HT3 receptor mechanism, then 
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these compounds are behaving similarly to the other 5-HT3 receptor antagonists, 

ondansetron and bemesetron; if that is the case, the 5-HT3 receptor agonist SR 57227A 

may be desensitizing the receptor and producing its antidepressive effect. If the 

antidepressant action of the agonist SR 57227A is from desensitization it may explain 

why MD-354, a partial agonist, is inactive and that the antidepressant action is because of 

an antagonist effect at the 5-HT3 receptors. However, since 5-HT3 receptors have been 

implicated in anxiety, the SR 57227A could be anxiogenic and the lowered immobility 

scores due to tremors from anxiety. 

In conclusion, two novel series of MD-354 analogs were synthesized. The first 

series, halogen analogs, was used to determine that an electronic effect at a meta-position 

is essential for binding. Furthermore, the poloarizability or the volume of the substituent 

is important as well for the binding of arylguanidines and arylbiguanides. It is most likely 

a combination of both the electronic effect and the polarizability, or the electronic effect 

and the volume, that affect binding together rather than just one individually. While the 

second series, quinazoline analogs, was developed to determine which meta-position was 

important, it has instead been shown to be a novel class of 5-HT3 receptor ligands. Two 

of the analogs (i.e., 46 and 47) have been shown to behave as antidepressants in the 

mouse tail suspension test. They may or may not be acting through a 5-HT3 receptor 

mechanism since 46 binds with higher affinity to the 5-ht5 and 5-HT7 receptors and 47 

only has a 4-fold selectivity over the 5-ht5 receptor. Overall the current pharmacophore 

for arylguanidines and arylbiguanides has been validated for unconstrained 
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arylguanidines. And a novel class of 5-HT3 receptor ligands, which are conformationally-

constrained arylguanidines, has been developed which do not fit the pharmacophore for 

arylguanidines and arylbiguanides. 
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VI. Experimental 

A. Synthesis 

Melting points were taken on one of two melting point apparatuses in glass 

capillary tubes and are uncorrected. Unless otherwise noted melting points were taken on 

a Thomas-Hoover melting point apparatus.  When noted, the melting points were taken 

on a Büchi B-545 melting point apparatus. 1H NMR spectra were recorded with a Varian 

EM-390 spectrometer with tetramethylsilane (TMS) as an internal standard. Peak 

positions are given in parts per million (δ). Infrared spectra were obtained on a Nicolet 

Avatar 360 FT-IR spectrophotometer. Microanalyses were performed by Atlantic 

Microlab Inc. (Norcross, GA) for the indicated elements and results are within 0.4% of 

calculated values. Chromatographic separations were performed on silica gel columns 

(Silica Gel 62, 60-200 mesh, Sigma-Aldrich). Flash chromatography was performed on a 

CombiFlash Companion/TS (Teledyne Isco Inc. Lincoln, NE). Reactions were monitored 

by thin-layer chromatography (TLC) on silica gel GHLF plates (250 µ, 2.5 X 10 cm; 

Analtech Inc. Neward, DE). 

N-(3-Fluorophenyl)guanidine Nitrate (42). Compound 42 was prepared according to a 

literature procedure.143 A solution of 3-fluoroaniline hydrochloride (50) (1.00 g, 6.78 

mmol) and cyanamide (0.38 g, 9.04 mmol) in abs EtOH (5 mL) was heated at reflux for 6 
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h. The solvent was removed under reduced pressure to give a pale yellow oil. The crude 

product was dissolved in H2O (2 mL) and NH4NO3 (1.00 g, 12.5 mmol) was added in 

excess. The solvent was removed under reduced pressure and the residue was crystallized 

from H2O. The light brown crystals were collected by filtration and washed with cold 

Et2O (3 x 5 mL) to yield 0.81 g (55%) of 42: mp 145-146 °C (H2O), 146-147 °C (EtOH) 

(lit178 165 °C, EtOH); IR (KBr, cm-1): 3342, 3330, 3195, 1669, 1597, 1493, 1369, 1143; 

1H NMR (DMSO-d6) δ 7.21-7.04 (m, 3H, ArH), 7.53-7.45 (m, 5H, ArH, NH2, ex with 

D2O), 9.72 (s, 1H, NH, ex with D2O). Anal. calcd for C7H8FN3 · HNO3: C, 38.89; H, 

4.20; N, 25.92 Found: C, 39.08; H, 4.15; N, 25.89. 

2-Amino-7-chloro-3,4-dihyroquinazoline, Hydrochloride (46). Compound 46 was 

prepared using a literature procedure for a similar compound.153 BH3-THF complex (12.2 

mL, 1 M, 12.2 mmol) was added in a dropwise manner to 56 (0.60 g, 3.06 mmol) under a 

N2 atmosphere. The orange mixture was heated at reflux for 2.5 h. After cooling the 

reaction mixture to room temperature, a 6 N solution of HCl (3 mL) was added in a 

dropwise manner releasing gas. Then a 6 N solution of NaOH (12 mL) was added in a 

dropwise manner to basify the reaction mixture. The solution was concentrated under 

vacuum, and hot CHCl3 (3 x 10 mL) was added. The solid at the interface was collected 

and dried under reduced pressure for 4 h to give a white solid 0.15 g, (24%): mp 183-185 

°C; 1H NMR (DMSO-δ6): 3.45 (br s, 1H, NH, D2O ex), 4.30 (s, 2H, CH2), 6.12 (br s, 1H, 

NH, D2O ex), 6.60 (s, 1H, ArH), 6.73 (d, 1H, ArH), 6.89 (d, 1H, ArH). A solution of the 

crude product (0.13g, 0.72 mmol) in abs EtOH was cooled in an ice/water bath. 



www.manaraa.com

102 
 

 
 

Concentrated HCl was added in a dropwise manner to a pH  3. The solvent was 

removed under reduced pressure and the process repeated twice more to give a white 

solid. The solid was recrystallized from hot EtOH to give a white solid 0.08 g (53%) of 

46: mp 249-251°C; IR (KBr, cm-1): 3300, 3190, 2979, 2927, 2855, 1700, 1618, 1493, 

1091; 1H NMR (DMSO- δ6): 4.45 (s, 2H, CH2), 7.07 (d, 1H, ArH), 7.17 (dd, 1H, ArH), 

7.25 (d, 1H, ArH), 7.77 (s, 2H, NH2, 1H D2O ex), 8.63 (s, 1H, NH, D2O ex), 11.02 (s, 

1H, NH, D2O ex). Anal calcd for C8H8N3Cl · HCl · 0.25 H2O: C, 43.17; H, 4.30; N, 18.88 

Found C, 43.37; H, 4.07; N, 18.55. 

2-Amino-6-chloro-3,4-dihyroquinazoline, Hydrochloride (47). Compound 47 was 

prepared according to a literature procedure for a similar compound.153 BH3-THF 

complex (11.6 mL, 1 M, 11.6 mmol) was added in a dropwise manner to 58 (0.65 g, 3.33 

mmol) under a N2 atmosphere. The orange mixture was heated at reflux for 2 h. After 

cooling the reaction mixture to room temperature, a 6 N solution of HCl (3 mL) was 

added in a dropwise manner releasing gas. Then a 6 N solution of NaOH (12 mL) was 

added to basify the mixture. The solution was concentrated under vacuum, and extracted 

with hot CHCl3 (20 mL x 3). The solvent was removed under reduced pressure to give a 

white solid 0.28 g (46%): mp 227-230 °C (lit132 225-230 °C, EtOH). A solution of the 

crude product (0.28 g, 1.51 mmol) in abs EtOH was cooled in an ice/water bath. 

Concentrated HCl was added in a dropwise manner to pH  3. The solvent was removed 

under reduced pressure and the process repeated twice more to give a white solid. The 
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solid was recrystallized from EtOH to afford a white crystalline solid 0.26 g (80%) of 47: 

mp 237-240°C (lit132 237-238 °C, EtOH). 

N-(3-Chloro-4-hydroxyphenyl)guanidine, Hydrochloride (51). Compound 51 was 

prepared according to a literature procedure.150 A solution of 54 (0.13 g, 0.72 mmol) and 

cyanamide (0.046 g, 1.08 mmol, 50% aq solution) in abs EtOH was heated at reflux for 

18 h. After allowing the purple solution to cool to room temperature, it was cooled 

further to -25 °C (in the freezer). A purple precipitate formed and was collected by 

filtration and washed with cold EtOH. The solid was dried under reduced pressure for 2 h 

over toluene to give 51 (0.080 g, 0.36 mmol, 50%) as a purple solid: mp 239-241 °C, 

251-254 °C (Büchi melting point apparatus) (lit150 244-246 °C dec, EtOH); 1H (DMSO-

d6): 2.53 (s, 1H, OH), 7.05 (s, 1H, ArH), 7.26-7.40 (d, 2H, ArH); IR (KBr, cm-1) 3370, 

1287. 

2-Chloro-4-nitrophenol (53). Compound 53 was prepared according to a literature 

procedure.151 Nitric acid (10.9 mL H2O, 9% wt) was added in a dropwise manner to a 

solution of 2-chlorophenol (52) (0.50 g, 3.89 mmol) in 1,2-dichloroethane (12.5 mL). The 

reaction mixture was sonnicated for 3 h, then washed with H2O (3 x 25 mL) and 

extracted with CH2Cl2 (3 x 25 mL). The combined organic portion was dried (Na2SO4), 

and the solvent was evaporated under reduced pressure to give a yellow, oily residue. 

Purification by flash chromatography on a silica gel column using hexanes/EtOAc (9:1) 

as eluent gave a crude yellow solid. The product was recrystallized from petroleum ether 
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to afford yellow crystals 0.24 g (35%) of 55: mp 106-108 °C (lit152 106-110 °C, H2O and 

AcOH). 

3-Chloro-4-hydroxyaniline, Hydrochloride (54). The free base of compound 54 was 

prepared according to a literature procedure.152 Sodium hydrosulfite (1.20 g, 6.91 mmol) 

was added in ten equal portions (0.12 g) over 10 min to a solution of 53 (0.30 g, 1.73 

mmol) in H2O (2 mL with 0.83 g, 20.74 mmol NaOH) heated at reflux. The reaction 

mixture was heated at reflux until the red color disappeared (approximately 20-30 min). 

After cooling to room temperature, a precipitate formed and was filtered then washed 

with cold H2O. The filtrate was extracted with Et2O (3 x 15 mL), the organic layer was 

dried (Na2SO4), and the solvent was removed under reduced pressure to afford a gray 

powder 0.13 g (50%) (which turned brown over time) of the free base of 54: mp 149-151 

°C (lit152 150-151 °C, H2O). The free base (0.125g, 0.87 mmol) was dissolved in EtOAc, 

cooled in an ice/water bath, and charged with N2 (g). HCl (g) was bubbled in for 10 min. 

After 30 min of standing on ice the suspension was filtered to give 54 (0.13 g, 83%) as a 

pale gray solid: mp > 250 °C. 

2-Amino-7-chloro-quinazolin-4-(3H)-one (56). Compound 56 was prepared according 

to a literature procedure for a similar compound.153 S-Methylisothiurea sulfate (1.4 g, 

5.06 mmol) and Na2CO3 (0.58 g, 5.47 mmol) were added to a solution of 4-chloroisatoic 

anhydride (55) (1.00 g, 5.06 mmol) in CH3CN (24 mL, 80%) and heated at reflux for 5 h. 

The reaction mixture was allowed to cool to room temperature over 30 min and the 

precipitate was collected by filtration. The solid was washed with CH3CN (80%, 3 x 25 
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mL) then dried under reduced pressure over toluene for 16 h to give 56 (0.64 g, 65%) as a 

pale pink solid: mp > 300 °C (lit179 > 300 °C); IR (KBr, cm-1) 3401, 2133, 1597, 1442, 

1101; 1H NMR (DMSO-δ6): 6.58 (br s, 2H, NH2, D2O ex), 7.11 (dd, 1H, ArH), 7.21 (d, 

1H, ArH), 7.87 (d, 1H, ArH), 11.10 (br s, 1H, NH, D2O ex). 

2-Amino-6-chloro-quinazolin-4-(3H)-one (58). This compound was prepared according 

to a literature procedure for a similar compound.153 5-Chloroisatoic anhydride (57) (1.00 

g, 5.06 mmol) was dissolved in CH3CN (24 mL, 80%), then S-methylisothiourea sulfate 

(1.4 g, 5.06 mmol) and Na2CO3 (0.58 g, 5.47 mmol) were added to the solution. The 

resulting solution was heated at reflux for 6 h. The reaction was allowed to cool to room 

temperature over 0.5 h. The suspension was filtered and washed with CH3CN (80%, 25 

mL x 3). The solid was dried under reduced pressure for 16 h to give a pale pink solid 

0.67 g (67%): mp >300 °C (lit9 >300 °C). 

2-Amino-4-chlorobenzylalcohol (60, R = H). Compound 60, R = H, was prepared 

according to a literature procedure.169 A suspension of LiAlH4 (0.33 g, 8.74 mmol) in 

anhydrous THF (50 mL) was cooled to 0 °C in an ice/water bath under N2 atmosphere. 2-

Amino-4-chlorobenzoic acid (59, R = H) (1.0 g, 5.83 mmol) in THF (25 mL) was added 

in a dropwise manner. The mixture was allowed to stir in an ice/water bath for 30 min, 

room temperature for 30 min, then heated at reflux for 40 min. The mixture was cooled to 

0 °C in an ice/water bath and an aqueous solution of THF (THF:H2O, 2:1) was added. 

The precipitate was removed by filtration and washed with THF (3 x 10 mL). The filtrate 

was dried (MgSO4) and the solvent was removed under reduced pressure. The resulting 
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solid was purified by column chromatography (hexanes:EtOAc, 2:1; hexanes:EtOAc, 1:1; 

EtOAc). The crude product was recrystallized from i-PrOH to give white crystals 0.80 g 

(87%) of the title compound: mp 139-140 °C (Lit169 140-142 °C). 

2-Amino-4-chlorobenzylbromide (61, R = H). Method A. Compound 61 (R = H) was 

attempted to be prepared according to the literature procedure for a similar compound.180 

Phosphorous tribromide (0.09 g, 0.33 mmol) was added to a suspension of 60 (R = H) 

(0.10 g, 0.63 mmol) in Et2O (3 mL) while stirring in an ice/water bath. The solution was 

stirred for 1 h then NH4Cl (saturated, 5 mL) was added and gas evolved. Water (5 mL) 

was added, and the reaction mixture was extracted with Et2O (3 x 5 mL). The Et2O layer 

was washed with brine (5 mL) and dried (MgSO4). The solvent was removed under 

reduce pressure. Compound 61 (R = H) could not be isolated. 

Method B. Compound 61 (R = H) was attempted to be prepared according to the 

literature procedure for a similar compound.181 Phosphorous tribromide (0.34 g, 1.27 

mmol) was added to a stirred solution of 60 (R = H) (0.10 g, 0.63 mmol) in CH2Cl2 (10 

mL). The solution was stirred at room temperature for 4 h then quenched by the addition 

of H2O (10 mL). The reaction mixture was extracted with CH2Cl2 (3 x 10 mL), washed 

with brine (10 mL), and dried (MgSO4). The solvent was removed under reduced 

pressure. Compound 61 could not be isolated. 

2-(2-Amino-4-chlorophenyl)acetic Acid (65). Attempts were made to prepare this 

compound according to a literature procedure.171 6-Chlorooxindole (0.20 g, 1.19 mmol) 



www.manaraa.com

107 
 

 
 

was suspended in 4 M NaOH (3 mL). The mixture was heated at reflux for 4.5 h, then 

cooled to room temperature. The precipitate was removed by filtration and washed with 

Et2O. The solid was dissolved in H2O (5 mL) and 6 N HCl was added in a dropwise 

manner while the solution was allowed to stir in an ice bath until a precipitate formed. 

The pale brown precipitate was collected: mp 195-197 °C. The filtrate was basified with 

6 N NaOH and extracted with Et2O (3 x 20 mL) and dried (Na2SO4). The solvent was 

removed to give a pale brown solid: mp 192-195 °C. The melting points of both solids 

matched the melting point of the starting material 64: mp 195-199 °C; 1H NMR (DMSO-

δ6) 3.44-3.54 (t, 2H), 3.94 (br s), 6.84 (s, 1H), 6.97-7.00 (d, 1H), 7.21-7.24 (d, 1H), 10.57 

(s, 1H); IR (KBr, cm-1) 3370, 1555, 1483, 1390, 1091. The literature171 melting point for 

65: 251-254 °C. 

4-Chloro-2-nitrobenzaldedhyde (69). Compound 69 was prepared according to a 

literature procedure.173 A solution of 68 (2.5 g, 12.2 mmol) and DMF-DMA (4.36 g, 36.6 

mmol) was allowed to stir in a 135 °C (oil bath) for 11 h then cooled to room 

temperature. The reaction mixture was added in a dropwise manner to a solution of 

NaIO4 (7.8 g, 36.5 mmol) in H2O (25 mL) and DMF (12.5 mL). After 3 h the suspension 

was filtered and the precipitate washed with toluene. The layers were separated and the 

organic portion was extracted with H2O (3 x 15 mL) and solvent was removed under 

reduced pressure. The resulting oil was purified by column chromatography 

(hexanes:EtOAc, 5:1). The starting material 68 was recovered (1.4 g) and compound 69 

was precipitated from the column fractions using hexanes to give 0.12 g (5%): mp 60-61 
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°C (lit182 50-60 °C, lit183 67-68 °C); 1H NMR (DMSO-d6) δ 7.95-8.05 (m, 2H, ArH), 8.31 

(s, 1H, ArH), 10.19 (s, 1H, OH). 

4-Chloro-2-nitro-1-(2-nitrovinyl)benzene (70). Compound 70 was attempted to be 

synthesized by a literature procedure for a similar compound.174 Ammonium acetate 

(0.02 g, 0.30 mmol) was added to a solution of 69 (0.10 g, 0.54 mmol) in CH3NO2 (1.0 

mL). The reaction mixture was heated at reflux for 5.5 h then allowed to cool to room 

temperature. The solution was concentrated under reduced pressure and the crude product 

was triturated in cold CH3OH (1 mL) and the solid removed by filtration. The filtrate was 

concentrated under reduced pressure. Neither column chromatography (hexanes:EtOAc, 

4:1) nor Kugelrohr distillation could purify the product. 

(4-Chloro-2-nitrophenyl)(1H-imidazol-1-yl)methanone (72). Compound 72 was 

synthesized according to a literature procedure.175 Carbonyldiimidazole (1.2 g, 7.5 mmol) 

was added to a suspension of 71 (1.5 g, 7.5 mmol) in THF (10 mL); CH3NO2 (2.0 mL) 

and K2CO3 (1.1 g, 8.2 mmol) were added in THF (8 mL). The reaction mixture was 

allowed to stir and heated at reflux for 4 h then allowed to cool to room temperature and 

the solvent removed under reduced pressure. The oily residue was dissolved in EtOAc 

(25 mL) and extracted with H2O (3 x 25 mL), washed with brine (10 mL), and dried 

(Na2SO4). The solvent was removed under reduced pressure and the residue was purified 

by column chromatography (EtOAc:CH3OH, 9:1) to give a solid compound 72: mp 139-

140 °C; 1H NMR (DMSO-d6) δ 7.18 (s, 1H), 7.73 (s, 1H), 8.04-8.23 (m, 3H), 8.505 (s, 

1H). 
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4-Chloro-2-nitrobenzylbromide (75). This compound was prepared according to a 

literature procedure.184 Benzoyl peroxide (0.54 g, 2.2 mmol) was slowly added to a 

stirred solution of 4-chloro-2-nitrotoluene (68) (22.3 g, 130.0 mmol) and N-

bromosuccinamide (23.1 g, 130.0 mmol) in CCl4 (200 mL). The reaction mixture was 

heated at reflux for 4 h, then irradiated with a 250 W light bulb for an additional 65 h. 

After cooling to room temperature the suspension was filtered and the filtrate was washed 

with H2O (2 x 50 mL). The organic portion was dried (MgSO4) and the solvent was 

removed under reduced pressure to give a brown oil. Crystals formed upon the edition of 

Et2O and petroleum ether. The remaining oil was purified by column chromatography 

(hexanes:EtOAc, 30:1) to give yellow crystals 14.5 g (45%): mp 38-39 °C (lit184 40-

41°C, hexanes). 

2,3-Bis(4-chloro-2-nitrophenyl)propanenitrile (77). Method A. Compound 77 was 

prepared according to a literature procedure for a similar compound.177 Sodium cyanide 

(0.37 g, 7.5 mmol) was dissolved in anhydrous DMSO (2.4 mL) under N2 atmosphere at 

10-15 °C. Concentrated H2SO4 (0.25 g, 2.5 mmol) was added by pipette and the mixture 

was allowed to stir for 10 min. A solution of 75 (0.63 g, 2.5 mmol) in anhydrous DMSO 

(1.1 mL) was added at -5 °C. The frozen suspension was allowed to warm to 5 °C. A blue 

precipitate formed then the solution turned brown. The solution was allowed to stir at 5 

°C for 3 h. The reaction mixture was poured into ice water (25 mL). The suspension was 

extracted with EtOAc (3 x 15 mL). The organic portion was washed with brine (15 mL), 

dried (Na2SO4) and the solvent removed under reduced pressure. A crude brown oily 
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solid (0.50 g) was recrystallized from a mixture of Et2O and CH3OH to give 0.1 g of a 

beige solid: mp 155-157 °C; 1H NMR (CDCl3) δ 3.45-3.51 (d, 1H), 3.78-3.82 (d, 1H), 

5.12-5.16 (t, 1H), 7.29 (s, 2H), 7.42 (d, 1H), 7.63-7.73 (m, 3H), 8.08 (s, 2H). 

Method B. Sodium cyanide (23.48 g, 490 mmol) was dissolved in H2O (133 mL). 

Compound 75 (12 g, 49.01 mmol) was added as a solution in CH2Cl2 (30 mL) with 

tetrabutylammonium bromide (0.05 g). The biphasic solution was allowed to vigorously 

stir for 30 min then separated. The organic portion was washed with H2O (3 x 100 mL), 

dried (Na2SO4), and the solvent evaporated. The crude product was separated by flash 

chromatography (hexanes:EtOAc, 10:1; hexanes:EtOAc, 4:1, hexanes:EtOAc, 1:1). The 

collected fractions solvent was removed under reduced pressure and the product was 

recrystallized from a mixture of hexanes and Et2O to give a pale, yellow solid: mp 149-

150 °C. 

Method C. Sodium cyanide (1.0 g) was dissolved in H2O (5 mL). Hydrobromic acid was 

added in a dropwise manner until approximately pH 1-2. Compound 75 (0.1 g) was added 

as a solution in CH2Cl2 (10 mL). Addition of tetrabutylammonium bromide did not 

initiate the reaction. 

Method D. Potassium cyanide (0.2 g) was suspended in acetonitrile (2 mL) and 18-

crown-6 (~0.05 g) was added. Compound 75 (0.05 g) was added and the solution 

immediately turned blue then dark brown. After 1 h the starting material was consumed 
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and TLC comparison of the product was consistent with products from both Methods A 

and B. 

B. Log P Analysis 

High-performance liquid-chromatography was performed on a Varian ProStar 

(Model 210, Varian Inc. Palo Alto, CA). Compounds were dissolved in aqueous 

acetonitrile (~0.7 mg/mL; ~85%). Each solution was filtered a total of four times; twice 

through two separate 0.45 μm Teflon filters. An ammonium acetate buffer was made 

using HPLC-grade water (Spectrum, Gardena, CA) and ammonium hydroxide (28% NH3 

in H2O; Sigma-Aldrich) and acetic acid (99.5%; Sigma-Aldrich), the pH was measured 

using a pH meter and the pH was adjusted to 6.93-7.40. A Microsorb-MV 100 CN 

column (particle size 5 μm, 4.6 mm i.d. x 250 mm l.; Varian Inc,. Palo Alto, CA), was 

equilibrated with HPLC-grade aceonitrile and the ammonium acetate buffer solution until 

a standard baseline and constant pressure were achieved.  The column was set to run in 

isocratic mode for 30 min and detect at a wavelength of 254 nm. 

1. Standards 

A sample (30 μL) of one of the standards (i.e., acetanilide, benzophenone, 

naphthalene, diphenylamine, imidazole) or uracil was injected into a 20 µL loop and the 

retention time from the elution peak was recorded. At the end of 30 min cycle another 30 

μL sample was run. This was repeated a third time then the column was washed by 

running it without a sample in graduated mode 80% to 20% acetonitrile. This process of 
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running three samples at one concentration of acetonitrile then washing the column was 

repeated for each sample at each concentration of acetonitrile used (40%, 50%, 60%, and 

70%). 

The average retention time for each standard and uracil was calculated for each 

concentration of acetonitrile (40%, 50%, 60%, and 70%). The relative retention time 

(RRT) to uracil was calculated for each compound at each concentration of acetonitrile 

by subtracting the average retention time of uracil from the average retention time of the 

standard (See Appendix A). 

The log of the capacity factor ( 'logk ) was calculated for each compound at each 

concentration of acetonitrile by taking the log of RRT divided by the average retention 

time of uracil (See Appendix A). 

The 'logk  values were plotted on the y-axis and the concentration of acetonitrile 

was plotted on the x-axis separately for each standard. Linear regression analyses were 

performed using GraphPad Prism (GraphPad Software Inc. La Jolla, CA) to give a linear 

equation for each compound. The 'log wk  value is the y-intercept or the value when the 

concentration of acetonitrile is 0%. 

The 'log wk  values for each standard were plotted on the x-axis and their 

experimental log P values from a shake-flask experiment were plotted on the y-axis. 
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Linear regression analysis of this plot gave a standard curve equation (e.g., log P = 1.660 

( 'log wk ) + 1.285). 

2. Halogen Series 

The average retention time for each compound in the halogen series (i.e., 27, 2, 

42-44, 35, 17) was calculated for each concentration of acetonitrile (55%, 65%, and 

75%). The relative retention time (RRT) to uracil was calculated for each compound at 

each concentration of acetonitrile by subtracting the average retention time of uracil from 

the average retention time of each compound tested. The log capacity factor ( 'logk ) was 

calculated for each compound at each concentration of acetonitrile by taking the log of 

the RRT divided by the average retention time of uracil (See Appendix A). 

The 'logk  values were plotted on the y-axis and the concentration of acetonitrile 

was plotted on the x-axis separately for each compound. Linear regression analyses were 

performed using GraphPad Prism to give a linear equation for each compound. The 

'log wk  value is the y-intercept or the value when the concentration of acetonitrile is 0%. 

By substituting their 'log wk  values into the standard curve equation the log P values were 

obtained. 

3. Quinazoline Series 

The average retention time for each compound in the quinazoline series (i.e., 46-

48) was calculated for each concentration of acetonitrile (55%, 60%, 65%, 70% and 
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75%). The relative retention time (RRT) to uracil was calculated for each compound at 

each concentration of acetonitrile by subtracting the average retention time of uracil from 

the average retention time of each compound tested. The log capacity factor ( 'logk ) was 

calculated for each compound at each concentration of acetonitrile by taking the log of 

the RRT divided by the average retention time of uracil (See Appendix A). 

The 'logk  values were plotted on the y-axis and the concentration of acetonitrile 

was plotted on the x-axis separately for each compound. Linear regression analyses were 

performed using GraphPad Prism to give a linear equation for each compound. The 

'log wk  value is the y-intercept or the value when the concentration of acetonitrile is 0%. 

By substituting their 'log wk  values into the standard curve equation the log P values were 

obtained. 

C. Behavioral Studies 

1. Animals 

Male ICR mice (19-30 g) were used throughout the study (Harlan Laboratories, 

Indianapolis, IN). Mice were housed in groups of 5-6 in solid-bottom plastic cages in a 

temperature (~22 °C)- and humidity (~50%)-controlled room. A standard 12:12 h 

dark:light cycle (lights on at 0700 h) was used, and food and water were available ad lib. 

The experiments were conducted according to standards set by the Institutional Animal 

Care and Use Committee (IACUC) of Virginia Commonwealth University and the NIH 

Guide for Care and Use of Laboratory Animals. Mice were allowed to adapt to the testing 
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environment at least 1 h prior to any treatment, and weighed 30 min prior to the start of 

the experiments. 

2. Drugs 

Ondansetron hydrochloride (Zofran®, Lot CO99723; GlaxoSmithKline) was 

purchased from MCVH-Pharmacy. Fluoxetine hydrochloride (Prozac®, Batch 4A/80352; 

Eli Lilly) was purchased from Tocris. Desipramine hydrochloride (Norpramin®, Lot 

86H0942; Aventis Pharm) and imipramine hydrochloride (Tofranil®, Lot 27H1380; 

Novartis) were purchased from Sigma. Compound 2 was used as a nitrate salt, 

compounds 46 and 47 were used as HCl salts, and compound 48 was used as an HBr salt; 

these four compounds were synthesized in our laboratory. Solutions were prepared fresh 

daily; all drugs were dissolved in 0.9% saline and administered to mice in a total volume 

of 10 mL/kg body weight by intraperitoneal (ip) injections. One exception was that 

solutions of compound 48 were not made fresh daily but were refrigerated overnight and 

used over a two-day period since very little of this compound was in stock and the 

synthesis is more extensive than the other quinazoline analogs.133 

3. Tail Suspension Test 

The mice were allowed to adapt to the room and to a white noise generator (to 

block out ambient noises from the surrounding hallways) for at least 2 h prior to the test; 

tests were conducted between 1000 and 1500 h. Mice, naïve to the test apparatus, were 

suspended ~1.5 cm from the tip of their tail with industrial grade Duct Tape to a bar 60 
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cm above a flat bench. The experimentor/rater was unaware of the experimental 

conditions (drug, drug dose) for individual animals. A random number table was used to 

determine the order the drugs were administered to the mice.185 The mice were treated 

with either saline (30 min pre-injection time), imipramine (20 mg/kg; 30 min pre-

injection time), desipramine (20 mg/kg; 30 min pre-injection time), fluoxetine (20 mg/kg, 

30 min pre-injection time), ondansetron (0.1 µg/kg, 30 min pre-injection time), MD-354 

(0.1, 1.0, 3.0, 10, or 30 mg/kg; 30 min pre-injection time), 46 (0.1, 0.3, 1.0, 3.0, 10, or 30 

mg/kg; 30 min pre-injection time), 47 (0.1, 0.3, 1.0, 3.0, 10, or 30 mg/kg; 30 min pre-

injection time), or 48 (0.1, 0.3, 1.0, 3.0, or 10 mg/kg; 30 min pre-injection time). Drug 

doses and pre-injection times for the standard agents were identical with what has been 

previously reported.15,155 The mice were only tested once and each dose of test agent was 

studied in 8-11 mice (n = 8-11 mice/treatment). The six minute suspension test was 

captured by video recording either with a Logitech Quickcam Pro for Notebooks or 

Nikon Coolpix S210 and Pinnacle USB-video capture device. The immobility time for 

each mouse was determined by viewing each mouse’s 6 min trial and recording the 

immobility time; each trial was reviewed and scored in triplicate and the mean of the 

three scores was used. A mouse was considered immobile when it was making no active 

escape movements but included passive swaying. A mouse was considered mobile when 

it was making running motions, body jerks, or attempting to catch its tail. 

 

 



www.manaraa.com

117 
 

 
 

4. Locomotor Activity Assay 

The mice were allowed to adapt to the room for at least 1 h prior to the test; tests 

were conducted between 0800 and 1630 h. Mice, naïve to the test apparatus, were placed 

in individual TruScan Activity System (Coulbourn Instruments, Allentown, PA) 

photocell arena chambers (model E63-10; 26 cm x 26 cm x 39 cm). The walls of the 

chamber were transparent and surrounded by two rings of infrared photodetectors (model 

E63-12). Each ring contained an array of 16 x 16 infrared detectors (spaced 1.524 cm (0.6 

in) apart). These rings were interfaced to a computer for the monitoring of the 

coordinates of each mouse’s location. A random number table was used to determine the 

order the drugs were administered.185 The mice were treated with saline (0 min pre-

injection time), 46 (0.3 mg/kg; 0 min pre-injection time), or 47 (1.0 or 3.0 mg/kg; 0 min 

pre-injection time). The mice were only tested once and each dose of test agent was 

studied in 12-13 mice (n = 12-13 mice/treatment). The behavioral analysis examined 14 

measures of activity: movement episodes, movement time (s), movement distance (cm), 

jumps, retraced local movements, retraced local movement episodes, retraced local 

movement time (s), margin distance traveled (cm), margin time (s), center arena entries, 

center distance (cm), center time (s), velocity (cm/s), and vertical plane entries. 

 
5. Statistical Analysis 

Data for immobility times and for each measure of locomotor activity were 

analyzed statistically by a one-way analysis of variance (ANOVA) followed by either the 

Dunnett’s t-test or the Newman-Keuls post-hoc comparison test using GraphPad Prism 
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(GraphPad Software Inc. La Jolla, CA). A Grubb’s test for outliers was used to identify 

outliers with an α = 0.05.  

 
D. Molecular Modeling 

The homology model studies were performed on a Silicon Graphics workstation 

using Sybyl (Version 7.3.3; Tripos Inc. St. Louis, MO), Modeller (Version 9.3; 

University of California San Francisco, San Francisco, CA), Chimera (Version 1, Build 

2422; University of California San Francisco, San Francisco, CA), GOLD (Version 3.1; 

Cambridge Crystallographic Data Centre, Cambridge, UK), and AutoDock (Version 4; 

Scripps Research Institute, La Jolla, CA). All ligands were built in Sybyl and given AM1 

charges and geometries based on MOPAC. The alignment of several LGICs and AChBPs 

was performed in Clustal X186 using the following accession numbers: 47519841 (5-

HT3A; Homo sapiens), 7305175 (5-HT3A; Mus musculus), 38327554 (GABAA α1; 

Homo sapiens), 4503863 (GABAA β1; Homo sapiens), 34734071 (GABAA δ; Homo 

sapiens), 12314059 (GABAA ρ2; Homo sapiens), 119372310 (Gly α1; Homo sapiens), 

and 1346173 (Gly β; Homo sapiens). PDBs used for alignment are 1i9b (AChBP; 

Lymnaea stagnalis), 2bg9 (nAChR; Torpedo marmorata), 2bj0 (AChBP; Bulinus 

truncates), 2byn (AChBP; Aplysia californica), and 2qc1 (nAChR α1 and α-

bungarotoxin; Bungarus multicinctus). 
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Appendix A 
 

HPLC Data for Standards in Log P Analysis 
 
  Acetonitrile 
Compound  40% 50% 60% 70%
Uracil RT 3.973 4.032 4.136 4.034
Acetanilide RT 5.360 4.745 4.664 4.541
 RRT 1.387 0.713 0.528 0.507
 'logk  -0.457 -0.753 -0.894 -0.900

Benzophenone RT 8.551 5.478 4.928 4.593
 RRT 4.578 1.446 0.792 0.559
 'logk  0.062 -0.445 -0.718 -0.858

Naphthalene RT 9.119 6.256 5.054 5.016
 RRT 5.146 2.224 0.918 0.982
 'logk  0.112 -0.258 -0.654 -0.613

Diphenylamine RT 10.467 6.502 4.750 4.954
 RRT 6.494 2.470 0.614 0.920
 'logk  0.213 -0.213 -0.828 -0.642

Imidazole RT 4.859 4.924 5.577 5.226
 RRT 0.886 0.892 1.441 1.192
 'logk  -0.652 -0.655 -0.458 -0.529

 

 

HPLC Data for Halogen Series in Log P Analysis 
 

  Acetonitrile 
Compound  55% 65% 75%
Uracil RT 3.314 3.391 3.466
27 RT 10.093 9.833 10.596
 RRT 6.779 6.441 7.130
 'logk  0.311 0.279 0.313

2 RT 9.286 9.423 10.168
 RRT 5.972 6.032 6.703
 'logk  0.256 0.250 0.286
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42 RT 9.498 9.529 10.083
 RRT 6.184 6.138 6.618
 'logk  0.271 0.258 0.281

43 RT 11.039 10.468 10.801
 RRT 7.725 7.077 7.336
 'logk  0.368 0.319 0.326

44 RT 11.792 10.989 10.980
 RRT 8.478 7.598 7.514
 'logk  0.408 0.350 0.336

35 RT 13.646 11.518 10.630
 RRT 10.332 8.127 7.164
 'logk  0.494 0.380 0.315

Uracil RT 3.045 3.239 3.380
17 RT 8.439 8.417 9.299
 RRT 5.394 5.178 5.919
 'logk  0.248 0.204 0.243

 

HPLC Data for Quinazoline Series in Log P Analysis 
 

  Acetonitrile 
Compound  55% 60% 65% 70% 75% 
Uracil RT 3.314 3.209 3.391 3.435 3.466 
46 RT 11.297 10.893 11.059 11.207 11.276 
 RRT 7.983 7.684 7.667 7.772 7.810 
 'logk  0.382 0.379 0.354 0.355 0.353 

47 RT 11.253 10.801 11.424 11.471 11.481 
 RRT 7.939 7.593 8.033 8.036 8.016 
 'logk  0.379 0.374 0.374 0.369 0.364 

48 RT 11.431 10.867 11.463 11.441 11.588 
 RRT 8.117 7.658 8.071 8.007 8.122 
 'logk  0.389 0.378 0.377 0.368 0.370 
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